The growing field of nano nuclear magnetic resonance (nano-NMR) seeks to estimate spectra or discriminate between spectra of minuscule amounts of complex molecules. While this field holds great promise, nano-NMR experiments suffer from detrimental inherent noise. This strong noise masks to the weak signal and results in a very low signal-to-noise ratio. Moreover, the noise model is usually complex and unknown, which renders the data processing of the measurement results very complicated. Hence, spectra discrimination is hard to achieve and in particular, it is difficult to reach the optimal discrimination. In this work we present strong indications that this difficulty can be overcome by deep learning (DL) algorithms. The DL algorithms can mitigate the adversarial effects of the noise efficiently by effectively learning the noise model. We show that in the case of frequency discrimination DL algorithms reach the optimal discrimination without having any pre-knowledge of the physical model. Moreover, the DL discrimination scheme outperform Bayesian methods when verified on noisy experimental data obtained by a single Nitrogen-Vacancy (NV) center. In the case of frequency resolution we show that this approach outperforms Bayesian methods even when the latter have full pre-knowledge of the noise model and the former has none. These DL algorithms also emerge as much more efficient in terms of computational resources and run times. Since in many real-world scenarios the noise is complex and difficult to model, we argue that DL is likely to become a dominant tool in the field.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6882844 | PMC |
http://dx.doi.org/10.1038/s41598-019-54119-9 | DOI Listing |
J Electromyogr Kinesiol
December 2024
School of Information Science and Technology, Dalian Maritime University, Linghai Road 1, Dalian, Liaoning Province 116026, China. Electronic address:
This study proposed a U-Net based partial convolutional time-domain model for a real-time high-density surface electromyography (HD-sEMG) decomposition. The model combines U-Net and a separation block containing partial convolution, aiming to efficiently identify motor units (MUs) without preprocessing. The proposed U-Net based network was trained by the HD-sEMG signals with innervation pulse trains (IPTs) labels, and the results are compared between different step sizes, noises, and model structures under the sliding time window with 120 sampling points.
View Article and Find Full Text PDFInvest Radiol
October 2024
From the Institute for Diagnostic and Interventional Radiology, University Hospital Zurich, University Zurich, Zurich, Switzerland (B.K., F.E., J.K., T.F., L.J.); Advanced Radiology Center, Department of Diagnostic Imaging and Oncological Radiotherapy, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy (C.S., A.R.L.); and Section of Radiology, Department of Radiological and Hematological Sciences, Università Cattolica del Sacro Cuore, Rome, Italy (A.R.L.).
Objectives: The aim of this study was to evaluate the feasibility and efficacy of visual scoring, low-attenuation volume (LAV), and deep learning methods for estimating emphysema extent in x-ray dose photon-counting detector computed tomography (PCD-CT), aiming to explore future dose reduction potentials.
Methods: One hundred one prospectively enrolled patients underwent noncontrast low- and chest x-ray dose CT scans in the same study using PCD-CT. Overall image quality, sharpness, and noise, as well as visual emphysema pattern (no, trace, mild, moderate, confluent, and advanced destructive emphysema; as defined by the Fleischner Society), were independently assessed by 2 experienced radiologists for low- and x-ray dose images, followed by an expert consensus read.
J Comput Biol
December 2024
Electrical, Computer and Biomedical Engineering, Toronto Metropolitan University, Toronto, Canada.
Image-to-image translation has gained popularity in the medical field to transform images from one domain to another. Medical image synthesis via domain transformation is advantageous in its ability to augment an image dataset where images for a given class are limited. From the learning perspective, this process contributes to the data-oriented robustness of the model by inherently broadening the model's exposure to more diverse visual data and enabling it to learn more generalized features.
View Article and Find Full Text PDFTomography
November 2024
KYAMOS Ltd., 37 Polyneikis Street, Strovolos, Nicosia 2047, Cyprus.
: Accurate reconstruction of internal temperature fields from surface temperature data is critical for applications such as non-invasive thermal imaging, particularly in scenarios involving small temperature gradients, like those in the human body. : In this study, we employed 3D convolutional neural networks (CNNs) to predict internal temperature fields. The network's performance was evaluated under both ideal and non-ideal conditions, incorporating noise and background temperature variations.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Nano Materials Research Division, Korea Institute of Materials Science, Changwon 51508, Republic of Korea.
This review explores a method of visualizing a demagnetization field () within a thin-foiled NdFeB specimen using electron holography observation. Mapping the is critical in electron holography as it provides the only information on magnetic flux density. The map within a NdFeB thin foil, derived from this method, showed good agreement with the micromagnetic simulation result, providing valuable insights related to coercivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!