NV center based nano-NMR enhanced by deep learning.

Sci Rep

Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, 91904, Givat Ram, Israel.

Published: November 2019

AI Article Synopsis

  • Nano nuclear magnetic resonance (nano-NMR) focuses on analyzing tiny amounts of complex molecules but struggles with significant noise that hampers signal clarity.
  • Deep learning (DL) algorithms show promise in overcoming these noise challenges by effectively learning the noise model and achieving optimal spectra discrimination without prior knowledge.
  • The performance of DL methods surpasses traditional Bayesian approaches in both frequency discrimination and resolution, demonstrating greater efficiency in computational resources as well.

Article Abstract

The growing field of nano nuclear magnetic resonance (nano-NMR) seeks to estimate spectra or discriminate between spectra of minuscule amounts of complex molecules. While this field holds great promise, nano-NMR experiments suffer from detrimental inherent noise. This strong noise masks to the weak signal and results in a very low signal-to-noise ratio. Moreover, the noise model is usually complex and unknown, which renders the data processing of the measurement results very complicated. Hence, spectra discrimination is hard to achieve and in particular, it is difficult to reach the optimal discrimination. In this work we present strong indications that this difficulty can be overcome by deep learning (DL) algorithms. The DL algorithms can mitigate the adversarial effects of the noise efficiently by effectively learning the noise model. We show that in the case of frequency discrimination DL algorithms reach the optimal discrimination without having any pre-knowledge of the physical model. Moreover, the DL discrimination scheme outperform Bayesian methods when verified on noisy experimental data obtained by a single Nitrogen-Vacancy (NV) center. In the case of frequency resolution we show that this approach outperforms Bayesian methods even when the latter have full pre-knowledge of the noise model and the former has none. These DL algorithms also emerge as much more efficient in terms of computational resources and run times. Since in many real-world scenarios the noise is complex and difficult to model, we argue that DL is likely to become a dominant tool in the field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6882844PMC
http://dx.doi.org/10.1038/s41598-019-54119-9DOI Listing

Publication Analysis

Top Keywords

noise model
12
deep learning
8
reach optimal
8
optimal discrimination
8
case frequency
8
bayesian methods
8
noise
7
model
5
discrimination
5
center based
4

Similar Publications

A U-Net based partial convolutional time-domain separation model to identify motor units from surface electromyographic signals in real time.

J Electromyogr Kinesiol

December 2024

School of Information Science and Technology, Dalian Maritime University, Linghai Road 1, Dalian, Liaoning Province 116026, China. Electronic address:

This study proposed a U-Net based partial convolutional time-domain model for a real-time high-density surface electromyography (HD-sEMG) decomposition. The model combines U-Net and a separation block containing partial convolution, aiming to efficiently identify motor units (MUs) without preprocessing. The proposed U-Net based network was trained by the HD-sEMG signals with innervation pulse trains (IPTs) labels, and the results are compared between different step sizes, noises, and model structures under the sliding time window with 120 sampling points.

View Article and Find Full Text PDF

Assessment of Emphysema on X-ray Equivalent Dose Photon-Counting Detector CT: Evaluation of Visual Scoring and Automated Quantification Algorithms.

Invest Radiol

October 2024

From the Institute for Diagnostic and Interventional Radiology, University Hospital Zurich, University Zurich, Zurich, Switzerland (B.K., F.E., J.K., T.F., L.J.); Advanced Radiology Center, Department of Diagnostic Imaging and Oncological Radiotherapy, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy (C.S., A.R.L.); and Section of Radiology, Department of Radiological and Hematological Sciences, Università Cattolica del Sacro Cuore, Rome, Italy (A.R.L.).

Objectives: The aim of this study was to evaluate the feasibility and efficacy of visual scoring, low-attenuation volume (LAV), and deep learning methods for estimating emphysema extent in x-ray dose photon-counting detector computed tomography (PCD-CT), aiming to explore future dose reduction potentials.

Methods: One hundred one prospectively enrolled patients underwent noncontrast low- and chest x-ray dose CT scans in the same study using PCD-CT. Overall image quality, sharpness, and noise, as well as visual emphysema pattern (no, trace, mild, moderate, confluent, and advanced destructive emphysema; as defined by the Fleischner Society), were independently assessed by 2 experienced radiologists for low- and x-ray dose images, followed by an expert consensus read.

View Article and Find Full Text PDF

Generative Adversarial Networks for Neuroimage Translation.

J Comput Biol

December 2024

Electrical, Computer and Biomedical Engineering, Toronto Metropolitan University, Toronto, Canada.

Image-to-image translation has gained popularity in the medical field to transform images from one domain to another. Medical image synthesis via domain transformation is advantageous in its ability to augment an image dataset where images for a given class are limited. From the learning perspective, this process contributes to the data-oriented robustness of the model by inherently broadening the model's exposure to more diverse visual data and enabling it to learn more generalized features.

View Article and Find Full Text PDF

: Accurate reconstruction of internal temperature fields from surface temperature data is critical for applications such as non-invasive thermal imaging, particularly in scenarios involving small temperature gradients, like those in the human body. : In this study, we employed 3D convolutional neural networks (CNNs) to predict internal temperature fields. The network's performance was evaluated under both ideal and non-ideal conditions, incorporating noise and background temperature variations.

View Article and Find Full Text PDF

This review explores a method of visualizing a demagnetization field () within a thin-foiled NdFeB specimen using electron holography observation. Mapping the is critical in electron holography as it provides the only information on magnetic flux density. The map within a NdFeB thin foil, derived from this method, showed good agreement with the micromagnetic simulation result, providing valuable insights related to coercivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!