Microbial electrochemical technologies: Electronic circuitry and characterization tools.

Biosens Bioelectron

Microbiology Department, School of Natural Sciences, National University of Ireland, Galway, University Road, Galway, Ireland.

Published: February 2020

Microbial electrochemistry merges microbiology, electrochemistry and electronics to provide a set of technologies for environmental engineering applications. Understanding the electronic concepts is crucial for effectively adopting these systems, but the importance of electronic circuitry is often overlooked by microbial electrochemistry researchers. This review provides the background on the electronics and electrochemical concepts involved in the study of microorganisms interacting with electricity, and their applications in microbial electrochemical technology (MET). The potentiostat circuitry is described along with its working principles. Electrochemical analyses are presented together with the rational and parameters employed to study MET devices and electroactive microorganisms. Finally, future directions are delineated towards the adoption of MET, and the related electronics, in environmental engineering applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2019.111884DOI Listing

Publication Analysis

Top Keywords

microbial electrochemical
8
electronic circuitry
8
microbial electrochemistry
8
environmental engineering
8
engineering applications
8
microbial
4
electrochemical technologies
4
technologies electronic
4
circuitry characterization
4
characterization tools
4

Similar Publications

The direct discharge of cationic surfactants into environmental matrices has exponentially increased due to their wide application in many products. These compounds and their degraded products disrupt microbial dynamics, hinder plant survival, and affect human health. Therefore, there is an urgent need to develop electroanalytical assessment techniques for their identification, determination, and monitoring.

View Article and Find Full Text PDF

Electrochemical and shake flask tests were used to examine the corrosion characteristics of typical gangue minerals in biometallurgical systems and their impact on microbial communities. The results show that the solubility order of the three gangue minerals is feldspar, mica, and quartz in descending order. Their corrosion processes are mainly controlled by cathodic electron-donating processes.

View Article and Find Full Text PDF

In-situ synthesis of FeS nanoparticles enhances Sulfamethoxazole degradation via accelerated electron transfer in anaerobic bacterial communities.

Water Res

December 2024

College of Water Sciences, Beijing Normal University, Beijing 100875, China; Beijing ENFI Environmental Protection Co., Ltd., Beijing, 100038, China.

The impact of nanominerals on microbial electron transfer and energy metabolism strategies during pollutant degradation remains uncertain. This study used in situ synthesized FeS nanoparticles (FeS NPs) to increase the degradation efficiency of SMX by anaerobic bacterial communities from 25.80 % to 47.

View Article and Find Full Text PDF

A Redox-Enzyme Integrated Microbial Fuel Cell Design Using the Surface Display System in MR-1.

ACS Appl Mater Interfaces

December 2024

Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.

A biofuel cell is an electrochemical device using exoelectrogen or biocatalysts to transfer electrons from redox reactions to the electrodes. While wild-type microbes and natural enzymes are often employed as exoelectrogen and biocatalysts, genetically engineered or modified organisms have been developed to enhance exoelectrogen activity. Here, we demonstrated a redox-enzyme integrated microbial fuel cell (REI-MFC) design based on an exoelectrogen-enhancing strategy that reinforces the electrogenic activity of MR1 by displaying an extra redox enzyme on the cell surface.

View Article and Find Full Text PDF

Food preservatives are essential for maintaining the safety and quality of food products. Nisin and natamycin are natural food preservatives extensively used in the food industry to enhance various food products' shelf life and safety. Nisin, a polycyclic antibacterial peptide, is effective against a broad spectrum of Gram-positive bacteria, including foodborne pathogens and spoilage organisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!