Histone deacetylase gene PtHDT902 modifies adventitious root formation and negatively regulates salt stress tolerance in poplar.

Plant Sci

State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin, 150040, China. Electronic address:

Published: January 2020

Histone deacetylases (HDACs) regulate gene transcription, and play a critical role in plant growth, development and stress responses. HD2 proteins are plant specific histone deacetylases. In woody plants, functions of HD2s are not known. In this study, we cloned an HD2 gene PtHDT902 from Populus trichocarpa and investigated its sequence, expression, subcellular localization, and functions in root development and salt stress responses. Our findings indicated that PtHDT902 was a nuclear protein and its expression was regulated by abiotic stresses. The over-expression of PtHDT902 in both Arabidopsis and poplar increased the expression levels of gibberellin (GA) biosynthetic genes. The expression of PtHDT902 in Arabidopsis enhanced primary root growth, and its over-expression in poplar inhibited adventitious root formation. These phenotypes resulted from over-expression of PtHDT902 were consistent with the GA-overproduction phenotypes. In addition, the poplar plants over-expressing PtHDT902 exhibited lower tolerance to salt than non-transgenic plants. These findings indicated that PtHDT902 worked as an important regulator in adventitious root formation and salt stress tolerance in poplar.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plantsci.2019.110301DOI Listing

Publication Analysis

Top Keywords

adventitious root
12
root formation
12
salt stress
12
pthdt902
8
gene pthdt902
8
stress tolerance
8
tolerance poplar
8
histone deacetylases
8
stress responses
8
findings indicated
8

Similar Publications

Background: Adventitious root (AR) formation is the key step for successful cutting propagation of tea plants (Camellia sinensis L.). Studies showed that arbuscular mycorrhizal fungus (AMF) can promote the rooting ability, and auxin pathway in basal stem of cuttings was involved in this process.

View Article and Find Full Text PDF

Identification of WRKY transcription factors in Ipomoea pes-caprae and functional role of IpWRKY16 in sweet potato salt stress response.

BMC Plant Biol

December 2024

The Key Laboratory of Biotechnology for Medicinal and Edible Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.

Background: WRKY transcription factors are plant-specific and play essential roles in growth, development, and stress responses, including reactions to salt, drought, and cold. Despite their significance, the WRKY genes in the wild sweet potato ancestor, Ipomoea pes-caprae, remain unexplored.

Results: In this study, 65 WRKY genes were identified in the I.

View Article and Find Full Text PDF

Physiological and transcriptomic analysis reveal the regulation of adventitious root formation in Cinnamomum parthenoxylon cuttings.

BMC Plant Biol

December 2024

Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu, 210037, P.R. China.

Cinnamomum parthenoxylon is a significant essential oil plant in southern China, however, the challenge of rooting cuttings poses a hindrance to its development and widespread cultivation. Adventitious root (AR) formation is a vital mechanism for plants to acclimate to environmental changes, yet the precise regulatory mechanisms governing this process remain largely unknown. This study investigated the morphological, physiological, and transcriptomic alterations during AR formation in C.

View Article and Find Full Text PDF

This study revealed a substrate-level synthesis of pigment cyanidin-3-O-glucoside and the redirection of metabolomic flux in the flavonoid/anthocyanin biosynthesis pathway in poplar adventitious roots (ARs) induced by stem canker pathogens. Recently, we observed a novel allometry on poplar stems, with copious colorful adventitious roots (ARs) induced by fungal canker pathogens. Here, we reveal chemical, physiological, and molecular mechanisms of AR coloration in poplar-pathogens (Valsa sordida/Botrosphaeria dothidea) interaction system using our phloem girdling-inoculation system.

View Article and Find Full Text PDF

Functional Analysis of in Controlling Root Regeneration from Detached Leaves.

Int J Mol Sci

December 2024

State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.

root regeneration is the process by which adventitious roots form around the wound site from wounded or detached plant organs. The root regeneration process has been widely exploited in cutting technology used for vegetative propagation. Here, we employed detached leaf explants from to form adventitious roots for studying the process of root regeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!