Background: Mesenchymal stem cells are heterogenous populations with hematopoietic supporting and immunomodulating capacities. Enormous studies have focused on their preclinical or clinical therapeutic effects, yet the systematic study of continuous in vitro passages on signatures and functions of UC-MSCs at both the cellular and molecular levels is still lacking.
Methods: In this study, to systematically evaluate the biological properties of MSCs at various passages, we analyzed biomarker expression, cell proliferation and apoptosis, chromosome karyotype, and tri-lineage differentiation potential. Subsequently, we took advantage of whole-exome sequencing to compare the somatic hypermutation of hUC-MSCs at P3, P6, and P15 including SNV and INDEL mutations. In addition, to explore the safety of the abovementioned hUC-MSCs, we performed metabolic pathway enrichment analysis and in vivo transplantation analysis. Furthermore, we cocultured the abovementioned hUC-MSCs with UCB-CD34 HSCs to evaluate their hematopoietic supporting capacity in vitro. Finally, we transplanted the cells into acute graft-versus-host disease (aGVHD) mice to further evaluate their therapeutic effect in vivo.
Results: The hUC-MSCs at P3, P6, and P15 showed similar morphology, biomarker expression, and cytokine secretion. hUC-MSCs at P15 had advantages on adipogenic differentiation and some cytokine secretion such as IL-6 and VEGF, with disadvantages on cell proliferation, apoptosis, and osteogenic and chondrogenic differentiation potential. Based on the SNP data of 334,378 exons and bioinformatic analyses, we found the somatic point mutations could be divided into 96 subsets and formed 30 kinds of signatures but did not show correlation with risk of tumorigenesis, which was confirmed by the in vivo transplantation experiments. However, hUC-MSCs at P15 showed impaired hematologic supporting effect in vitro and declined therapeutic effect on aGVHD in vivo.
Conclusions: In this study, we systematically evaluated the biological and genetic properties of hUC-MSCs at various passages. Our findings have provided new references for safety and effectiveness assessments, which will provide overwhelming evidence for the safety of hUC-MSCs after continuous in vitro passages both at the cellular and molecular levels for the first time. Taken together, our studies could help understand the controversial effects of disease treatment and benefit the clinical research of UC-MSCs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6883552 | PMC |
http://dx.doi.org/10.1186/s13287-019-1478-4 | DOI Listing |
Stem Cell Res Ther
November 2019
State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China.
Background: Mesenchymal stem cells are heterogenous populations with hematopoietic supporting and immunomodulating capacities. Enormous studies have focused on their preclinical or clinical therapeutic effects, yet the systematic study of continuous in vitro passages on signatures and functions of UC-MSCs at both the cellular and molecular levels is still lacking.
Methods: In this study, to systematically evaluate the biological properties of MSCs at various passages, we analyzed biomarker expression, cell proliferation and apoptosis, chromosome karyotype, and tri-lineage differentiation potential.
PLoS One
January 2015
Department of Cardiology, Taizhou People's Hospital, Taizhou, Jiangsu province, China.
Background: Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) are in the foreground as a preferable application for treating diseases. However, the safety of hUC-MSCs after long-term culturing in vitro in serum-free medium remains unclear.
Methods: hUC-MSCs were separated by adherent tissue culture.
Cell Tissue Bank
December 2014
Department of Cardiology, Taizhou Renmin Hospital, Taizhou, 225300, Jiangsu Province, China.
Mesenchymal stem cells (MSCs) are multipotent adult stem cells that have an immunosuppressive effect. The biological stability of MSCs in serum-free medium during long-term culture in vitro has not been elucidated clearly. The morphology, immunophenotype and multi-lineage potential were analyzed at passages 3, 5, 10, 15, 20, and 25 (P3, P5, P10, P15, P20, and P25, respectively).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!