Background: Insulin resistance (IR) is predictive for type 2 diabetes and associated with various metabolic abnormalities in fasting conditions. However, limited data are available on how IR affects metabolic responses in a non-fasting setting, yet this is the state people are mostly exposed to during waking hours in the modern society. Here, we aim to comprehensively characterise the metabolic changes in response to an oral glucose test (OGTT) and assess the associations of these changes with IR.
Methods: Blood samples were obtained at 0 (fasting baseline, right before glucose ingestion), 30, 60, and 120 min during the OGTT. Seventy-eight metabolic measures were analysed at each time point for a discovery cohort of 4745 middle-aged Finnish individuals and a replication cohort of 595 senior Finnish participants. We assessed the metabolic changes in response to glucose ingestion (percentage change in relative to fasting baseline) across the four time points and further compared the response profile between five groups with different levels of IR and glucose intolerance. Further, the differences were tested for covariate adjustment, including gender, body mass index, systolic blood pressure, fasting, and 2-h glucose levels. The groups were defined as insulin sensitive with normal glucose (IS-NGT), insulin resistant with normal glucose (IR-NGT), impaired fasting glucose (IFG), impaired glucose tolerance (IGT), and new diabetes (NDM). IS-NGT and IR-NGT were defined as the first and fourth quartile of fasting insulin in NGT individuals.
Results: Glucose ingestion induced multiple metabolic responses, including increased glycolysis intermediates and decreased branched-chain amino acids, ketone bodies, glycerol, and triglycerides. The IR-NGT subgroup showed smaller responses for these measures (mean + 23%, interquartile 9-34% at 120 min) compared to IS-NGT (34%, 23-44%, P < 0.0006 for difference, corrected for multiple testing). Notably, the three groups with glucose abnormality (IFG, IGT, and NDM) showed similar metabolic dysregulations as those of IR-NGT. The difference between the IS-NGT and the other subgroups was largely explained by fasting insulin, but not fasting or 2 h glucose. The findings were consistent after covariate adjustment and between the discovery and replication cohort.
Conclusions: Insulin-resistant non-diabetic individuals are exposed to a similar adverse postprandial metabolic milieu, and analogous cardiometabolic risk, as those with type 2 diabetes. The wide range of metabolic abnormalities associated with IR highlights the necessity of diabetes diagnostics and clinical care beyond glucose management.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6883544 | PMC |
http://dx.doi.org/10.1186/s12916-019-1440-4 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
Malignant gliomas are heterogeneous tumors, mostly incurable, arising in the central nervous system (CNS) driven by genetic, epigenetic, and metabolic aberrations. Mutations in isocitrate dehydrogenase (IDH1/2) enzymes are predominantly found in low-grade gliomas and secondary high-grade gliomas, with IDH1 mutations being more prevalent. Mutant-IDH1/2 confers a gain-of-function activity that favors the conversion of a-ketoglutarate (α-KG) to the oncometabolite 2-hydroxyglutarate (2-HG), resulting in an aberrant hypermethylation phenotype.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Bioengineering, California Institute of Technology, Pasadena, CA 91125.
The diversity and heterogeneity of biomarkers has made the development of general methods for single-step quantification of analytes difficult. For individual biomarkers, electrochemical methods that detect a conformational change in an affinity binder upon analyte binding have shown promise. However, because the conformational change must operate within a nanometer-scale working distance, an entirely new sensor, with a unique conformational change, must be developed for each analyte.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390.
Neurotransmitter release is triggered in microseconds by Ca-binding to the Synaptotagmin-1 C-domains and by SNARE complexes that form four-helix bundles between synaptic vesicles and plasma membranes, but the coupling mechanism between Ca-sensing and membrane fusion is unknown. Release requires extension of SNARE helices into juxtamembrane linkers that precede transmembrane regions (linker zippering) and binding of the Synaptotagmin-1 CB domain to SNARE complexes through a "primary interface" comprising two regions (I and II). The Synaptotagmin-1 Ca-binding loops were believed to accelerate membrane fusion by inducing membrane curvature, perturbing lipid bilayers, or helping bridge the membranes, but SNARE complex binding through the primary interface orients the Ca-binding loops away from the fusion site, hindering these putative activities.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Cell & Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093.
A spectacular diversity of forms and features allow species to thrive in different environments, yet some structures remain relatively unchanged. Insect compound eyes are easily recognizable despite dramatic differences in visual abilities across species. It is unknown whether distant insect species use similar or different mechanisms to pattern their eyes or what types of genetic changes produce diversity of form and function.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 10120, Thailand.
A single-component flavin-dependent halogenase, AetF, has emerged as an attractive biocatalyst for catalyzing halogenation. However, its flavin chemistry remains unexplored and cannot be predicted due to its uniqueness in sequence and structure compared to other flavin-dependent monooxygenases. Here, we investigated the flavin reactions of AetF using transient kinetics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!