We demonstrate a nonintrusive technique that is capable of measuring all three-components of vorticity following small tracer particles in the flow. The vorticity is measured by resolving the instantaneous spin of the microsized spherical hydrogel particles, in which small mirrors are encapsulated. The hydrogel particles have the same density and refractive index as the working fluid-water. The trajectory of the light reflected by the spinning mirror, recorded by a single camera, is sufficient to determine the 3D rotation of the hydrogel particle, and hence the vorticity vector of the flow at the position of the particle. Compared to more conventional methods that measure vorticity by resolving velocity gradients, this technique has much higher spatial resolution. We describe the principle of the measurement, the optical setup to eliminate the effect of particle translation, the calibration procedure, and the analysis of measurement uncertainty. We validate the technique by measurements in a Taylor-Couette flow. Our technique can be used to obtain the multipoint statistics of vorticity in turbulence.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5121016DOI Listing

Publication Analysis

Top Keywords

vorticity vector
8
particles flow
8
hydrogel particles
8
vorticity
5
measuring vorticity
4
vector spinning
4
spinning micro-sized
4
micro-sized mirror-encapsulated
4
mirror-encapsulated spherical
4
particles
4

Similar Publications

Recently, vortex beams have been widely studied and applied because they carry orbital angular momentum (OAM). It is widely acknowledged in the scientific community that fractional OAM does not typically exhibit stable propagation; notably, the notion of achieving stable propagation with dual-fractional OAM within a single optical vortex has been deemed impracticable. Here, we address the scientific problem through the combined modulation of phase and polarization, resulting in the generation of a dual-fractional OAM vector vortex beam that can stably exist in free space.

View Article and Find Full Text PDF

Nanoscale detection and control of the magnetic order underpins a spectrum of condensed-matter research and device functionalities involving magnetism. The key principle involved is the breaking of time-reversal symmetry, which in ferromagnets is generated by an internal magnetization. However, the presence of a net magnetization limits device scalability and compatibility with phases, such as superconductors and topological insulators.

View Article and Find Full Text PDF

In this paper, the circular Bessel Gaussian beams (CBGBs) carrying power-cotangent-phase vortices are firstly introduced, whose propagation dynamics are explored theoretically and experimentally. The number of spiral lobes, rotation direction, rotation angle, and shape of the new type of beam can be flexibly modulated by controlling multiple parameters of power-cotangent-phase vortices. Accordingly, the effect of multiple beam parameters on abruptly autofocusing ability is quantified and compared by using the K-value curve that is described by ratio Im/I, where Im and I correspond to the maximum intensities at different propagation distance and the initial plane, respectively.

View Article and Find Full Text PDF

Background: Physical vascular phantoms are instrumental in studying intracranial aneurysms and testing relevant imaging tools and training systems to provide improved clinical care. Current vascular phantom production methods have major limitations in capturing the biophysical and morphological characteristics of intracranial aneurysms with good fidelity and multi-modal imaging capacity. With stereolithography (SLA) 3D printing technology becoming more accessible, newer flexible and transparent printing materials with higher precision controls open the door for improving the efficiency and quality of producing anthropomorphic vascular phantoms but have rarely been explored for the application.

View Article and Find Full Text PDF

By their powerful talent in manipulating optical parameters, metasurfaces demonstrate great ability in the generation of the vortex beams. Until now, vortex beam generators constructed by metasurfaces mostly lack tunability, which reduces the scope of their applications. Here, spin-decoupled moiré metalenses composed of two cascaded all-dielectric metasurfaces are designed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!