Quartz crystal microbalance with dissipation monitoring (QCMD) is a simple and versatile sensing technique with applications in a wide variety of academic and industrial fields, most notably electrochemistry, biophysics, quality control, and environmental monitoring. QCMD is limited by a relatively poor time resolution, which is of the order of seconds with conventional instrument designs at the noise level usually required. In this work, we present a design of an ultrafast QCMD with submillisecond time resolution. It is based on a frequency comb approach applied to a high-fundamental-frequency (HFF) resonator through a multifrequency lock-in amplifier. The combination allows us to reach data acquisition rates >10 kHz. We illustrate the method using a toy model of a glass sphere dropped on the resonator surfaces, bare or coated with liposomes, in liquid. We discuss some interesting features of the results obtained with the dropped spheres, such as bending of the HFF resonators due to the impact, sphere bouncing (or the absence of it), and contact aging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.5115979 | DOI Listing |
J Allergy Clin Immunol
December 2024
Department of Internal Medicine, Division of Rheumatology, Allergy and Immunology, University of Cincinnati, USA.
Background: There is no global agreement on the definition of Chronic Spontaneous Urticaria (CSU) remission.
Objective: To generate a consensus for clinical definitions in CSU focused on remission.
Methods: The World Allergy Organization (WAO) Urticaria Committee systematically reviewed current available longitudinal articles.
Environ Pollut
December 2024
Associate Unit CSIC-University of Huelva "Atmospheric Pollution", Center for Research in Sustainable Chemistry - CIQSO, University of Huelva, E21007 Huelva, Spain; Department of Earth Sciences, Faculty of Experimental Sciences, University of Huelva, Campus El Carmen s/n, E21007, Huelva, Spain.
Emissions of metals and metalloids as a result of industrial processes, entail a great risk to human health. A high time resolution study on arsenic levels in PM in the city of Huelva (SW Spain) was carried out between September 2021 and September 2022. Hourly data obtained with a near real-time technique based on X-ray fluorescence were inter-compared with other offline analytical instrumentation.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Department of Chemistry, Fu Jen Catholic University, New Taipei City 24205, Taiwan.
A novel metal-organic framework (MOF), (Cu-S)MOF, with a copper-sulfur planar structure was applied to photocatalytic H production application. (Cu-S)MOF@ZnS nanocomposite was synthesized using a microwave-assisted hydrothermal approach. The formation of (Cu-S)MOF and wurtzite ZnS in the composite nanoparticles was analyzed by X-ray diffraction (XRD), field emission-scanning electron microscopy (FESEM), and high-resolution transmission electron microscope (HRTEM).
View Article and Find Full Text PDFZh Nevrol Psikhiatr Im S S Korsakova
December 2024
European University at St. Petersburg, St. Petersburg, Russia.
An important area of V.M. Bekhterev's scientific research, which to this day does not have a productive resolution and remains controversial, was an attempt to combine the science of the human psyche with a speculative philosophy close to pantheistic views about the «universal soul».
View Article and Find Full Text PDFANZ J Surg
December 2024
Royal Prince Alfred Institute of Academic Surgery, Sydney Local Health District, Sydney, New South Wales, Australia.
Background: Facial prosthetics are an important means to rehabilitate patients with congenital or acquired facial defects. However, with a time-consuming manual workflow and workforce shortage, access to facial prosthetics is limited in Australia and worldwide, especially for rural and remote patients. Optical 3D scanning has been increasingly integrated in digitizing data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!