A fast and versatile method for spectral emissivity measurement at high temperatures.

Rev Sci Instrum

Institut Clément Ader (ICA), Université de Toulouse, CNRS, IMT Mines Albi, INSA, ISAE-SUPAERO, UPS, Campus Jarlard, F-81013 Albi, France.

Published: November 2019

In this paper, the development of a new device for high temperature emissivity measurement is described. This device aims at measuring both spectral and total emissivity for a thermal range of 600-1000 °C. The main targeted properties of this device are versatility and simplicity. To achieve this, a rigorous selection of components such as heating systems, heat sources, sample holders, and measuring devices was made. Sample dimensions and the corresponding sample holder were optimized through a ray tracing model computation. Selection of sensors to compute the total emissivity was also discussed. A near-infrared (NIR) spectrometer and two mid-infrared (MIR) cameras equipped with optical filters covering the bandwidth of 3-5 and 7.5-13 μm were chosen for spectral measurements. The major impediment was the separation of the sample signal and various spurious signals emitted by the environment. A specific measurement methodology was then made for each bandwidth to resolve this issue. Platinum was chosen as the reference material for the device validation. Spectral emissivity measurements were then compared to values from a commercial spectrometer. A good agreement was found between NIR and MIR band I measurements, and a higher error rate was seen in MIR band II which is explained by a less favorable signal to noise ratio. Integrated emissivity is then calculated and compared to values found in the literature. A good agreement between these values is found, and similar trends with temperature are observed. The device is then validated for spectral and total emissivity measurements. Device versatility and simplicity allow for an easy adaptation to a large area of applications.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5116425DOI Listing

Publication Analysis

Top Keywords

total emissivity
12
spectral emissivity
8
emissivity measurement
8
spectral total
8
device versatility
8
versatility simplicity
8
emissivity measurements
8
compared values
8
good agreement
8
mir band
8

Similar Publications

Radar-Terahertz-Infrared Compatible Stealth Coaxial Silver Nanowire@Carbon Nano-cable Aerogel.

Angew Chem Int Ed Engl

January 2025

Beihang University, School of Chemistry, chemsitry, No 37 Xueyuan Rd, 100191, Beijing, CHINA.

Achieving multi-spectrum compatible stealth in radar-terahertz-infrared bands with robust performance has great prospects for both military and civilian applications. However, the progress of materials encounters substantial challenges due to the significant variability in frequency coupling properties across different electromagnetic wave bands. Here, this work presents the design of a multi-scale structure and fabricates a lightweight aerogel (silver nanowire@carbon, AgNW@C) consisting of a regular coaxial nano-cable, with silver nanowire as the core and amorphous-graphitized hybrid carbon as the outer-layer.

View Article and Find Full Text PDF

Deep-subwavelength multilayered meta-coatings for visible-infrared compatible camouflage.

Nanophotonics

May 2024

Department of Materials Science & Institute of Optoelectronics, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai 200433, China.

Camouflage is a common technique in nature, enabling organisms to protect themselves from predators. The development of novel camouflage technologies, not only in fundamental science, but also in the fields of military and civilian applications, is of great significance. In this study, we propose a new type of deep-subwavelength four-layered meta-coating consisting of Si, Bi, Si, and Cr from top to bottom with total thickness of only ∼355 nm for visible-infrared compatible camouflage.

View Article and Find Full Text PDF

Sophisticated multispectral detectors have made single-band camouflage materials ineffective, consequently leading to significant advancements in metasurfaces that possess both infrared (IR), radar, and visible stealth capabilities. However, the mutual constraints of stealth principles across different bands and the demand for environment-adaptive camouflage raise challenges to existing multispectral compatible stealth solutions. Here a multifunctional-hierarchical flexible metasurface (MHFM) including an infrared suppression layer (IRSL), three microwave absorbing layers (MAL), an environmental adaptation layer (EAL), and a total reflective sheet (TRS), was designed to simultaneously achieve IR, radar, and dynamic visible stealth.

View Article and Find Full Text PDF

With the rapid advancement of multi-band detection technologies, military and civilian equipment face an increasing risk of being detected, posing significant challenges to traditional single-band camouflage designs. To address this issue, this study presents an innovative multilayer structure using Ge, Cu, and ZnSe materials to achieve triple-band infrared camouflage, visible camouflage, and radiative cooling. The structure exhibits low emissivity in the short-wave infrared (SWIR, 1.

View Article and Find Full Text PDF

The hybrid nature of the mid-infrared (MIR) spectrum complicates the separation of reflected solar irradiance from total energy. Consequently, existing studies rarely use MIR satellite data alone for retrieving land surface temperature (LST) and land surface emissivity (LSE). In this study, we developed What we believe to be a novel physics-based approach to retrieve LSE and LST using MIR channel data from the MEdium Resolution Spectral Imager II (MERSI-II) onboard China's new-generation polar-orbiting meteorological satellite Fengyun-3D (FY-3D).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!