The generation and transfer of electron spin polarization and coherence plays an important role in quantum information technologies and spintronics. In this context, the excited state spin dynamics of molecular systems in which a stable free radical is attached to a chromophore are of particular interest. In such complexes, the coupling between the electron spin on the free radical with those on the chromophore generates excited states referred to as sing-doublet, trip-doublet, and trip-quartet. Here, we study the light-induced electron spin polarization in an aluminum(iii) porphyrin (AlPor) complex in which the nitroxide (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) is covalently bound to the Al center via an ester linkage. In addition to the covalent bond to the TEMPO moiety, the Al center in AlPor also acts as a Lewis acid and can coordinate Lewis bases such as pyridine. Without pyridine bound, the spin polarized transient electron paramagnetic resonance spectrum of the complex at 80 K is unusual and displays a strong absorptive pattern with a Lorentzian lineshape. Coordination of pyridine to AlPor-TEMPO results in a dramatic change in the spin polarization pattern and a spectrum typical of the quartet state with broad wings from the m = ±1/2 ↔ ±3/2 transitions with emissive/absorptive polarization and a narrow absorptive peak from the m = ±1/2 ↔ ±1/2 transitions. At later times, the pattern evolves to a purely absorptive spectrum similar to that observed without pyridine. These changes are discussed in terms of a model in which back and forth transitions between the nearly degenerate lowest trip-doublet and trip-quartet states occur. It is argued that these transitions lead to the observed net polarization in AlPor-TEMPO and are fast enough that the outer lines are broadened. Density functional theory computations and the UV/Vis spectra suggest that the exchange interaction between TEMPO and the triplet state of AlPor increases when pyridine is bound, and the near degeneracy of the lowest excited states is lifted. It is argued that this slows the back and forth transitions which results in the strong change in the polarization pattern.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5127760DOI Listing

Publication Analysis

Top Keywords

electron spin
16
spin polarization
16
free radical
8
excited states
8
trip-doublet trip-quartet
8
pyridine bound
8
polarization pattern
8
±1/2 ↔
8
polarization
7
spin
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!