A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Temperature controlled Ru and RuO growth via O radical-enhanced atomic layer deposition with Ru(EtCp). | LitMetric

Temperature controlled Ru and RuO growth via O radical-enhanced atomic layer deposition with Ru(EtCp).

J Chem Phys

Department of Materials Science and Engineering, Inter-University Semiconductor Research Center, Seoul National University, Seoul 08826, South Korea.

Published: November 2019

This work demonstrates by in vacuo X-ray photoelectron spectroscopy and grazing-incidence X-ray diffraction that Ru(EtCp) and O radical-enhanced atomic layer deposition, where EtCp means the ethylcyclopentadienyl group, provides the growth of either RuO or Ru thin films depending on the deposition temperature (T), while different mechanisms are responsible for the growth of RuO and Ru. The thin films deposited at temperatures ranging from 200 to 260 °C consisted of polycrystalline rutile RuO phase revealing, according to atomic force microscopy and the four-point probe method, a low roughness (∼1.7 nm at 15 nm film thickness) and a resistivity of ≈83 µΩ cm. This low-temperature RuO growth was based on Ru(EtCp) adsorption, subsequent ligand removal, and Ru oxidation by active oxygen. The clear saturative behavior with regard to the precursor and reactant doses and each purge time, as well as the good step coverage of the film growth onto 3D structures, inherent to genuine surface-controlled atomic layer deposition, were confirmed for the lowest T of 200 °C. However, at T = 260 °C, a competition between film growth and etching was found, resulted in not-saturative growth. At higher deposition temperatures (300-340 °C), the growth of metallic Ru thin films with a resistivity down to ≈12 µΩ cm was demonstrated, where the film growth was proved to follow a combustion mechanism known for molecular oxygen-based Ru growth processes. However, this process lacked the truly saturative growth with regard to the precursor and reactant doses due to the etching predominance.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5107509DOI Listing

Publication Analysis

Top Keywords

atomic layer
12
layer deposition
12
thin films
12
film growth
12
growth
11
ruo growth
8
radical-enhanced atomic
8
growth ruo
8
ruo thin
8
260 °c
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!