Suppression of circDcbld1 Alleviates Intimal Hyperplasia in Rat Carotid Artery by Targeting miR-145-3p/Neuropilin-1.

Mol Ther Nucleic Acids

Department of Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Key Laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease/Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China. Electronic address:

Published: December 2019

We replicated the rat common carotid artery (CCA) intima hyperplasia model and found the expression of a circular RNA, circRNA_009723 (circDcbld1), was markedly increased in the CCA with intimal hyperplasia. In vitro, the suppression of circDcbld1 in rat vascular smooth muscle cells (VSMCs) led the increase of contractile smooth muscle cell markers and the decrease of cell migration. In vivo, the injection of chemically modified circDcbld1 small interfering RNA (siRNA) lessened the formation of neointima in rat CCA after balloon injury. Further experiments proved that circDcbld1, as a competing endogenous RNA, interacted with miR-145-3p and upregulated the level of neuropilin-1 (Nrp1), thereby regulating the migration of VSMCs. In this study, we demonstrated a new mechanism by which circular RNA promotes intimal hyperplasia. We deem that intervention in the circDcbld1-miR-145-3p/Nrp1 pathway might be a feasible approach to alleviate the post-injury intimal hyperplasia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6889766PMC
http://dx.doi.org/10.1016/j.omtn.2019.10.023DOI Listing

Publication Analysis

Top Keywords

intimal hyperplasia
16
suppression circdcbld1
8
carotid artery
8
circular rna
8
smooth muscle
8
hyperplasia
5
circdcbld1 alleviates
4
intimal
4
alleviates intimal
4
rat
4

Similar Publications

Cardiovascular diseases (CVDs) are the foremost cause of mortality worldwide, with incidence and mortality rates persistently climbing despite extensive research efforts. Innovative therapeutic approaches are still needed to extend patients' lives and preserve their health. In the present study, novel supramolecular nanomedicine with both nitric oxide (NO) and antioxidant releasing ability was developed to enhance therapeutic efficacy against vascular injuries.

View Article and Find Full Text PDF
Article Synopsis
  • Intimal hyperplasia (IH) is a major issue in vascular interventions, and this study investigates the role of gangliosides GA2 in its development.
  • Researchers found that GA2 levels were significantly higher in atherosclerotic mouse aortae and plasma, and injecting GA2 worsened IH by interacting with macrophages.
  • The study reveals that GA2 activates caspase-4 and promotes pyroptosis in macrophages, suggesting a new mechanism for IH that could lead to potential diagnostic and treatment strategies.
View Article and Find Full Text PDF

Astragali Radix-Angelicae Sinensis Radix inhibits the activation of vascular adventitial fibroblasts and vascular intimal proliferation by regulating the TGF-β1/Smad2/3 pathway.

J Ethnopharmacol

December 2024

School of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, 300 Bachelor Road, Hanpu Science and Education Park, Yuelu District, 410208Changsha City, Hunan Province, China; Hunan Key Laboratory of Integrated Chinese and Western Medicine for Prevention and Treatment of Heart and Brain Diseases, 410208, Changsha, China. Electronic address:

Ethnopharmacological Relevance: Astragali Radix-Angelicae Sinensis Radix is an important traditional Chinese medicine used for the treatment of cardiovascular diseases. Our previous studies have shown that Astragali Radix-Angelicae Sinensis Radix can inhibit vascular intimal hyperplasia and improve the blood vessel wall's ECM deposition, among which six main active components can be absorbed into the blood, suggesting that these components may be the main pharmacodynamic substances of Astragali Radix-Angelicae Sinensis Radix against vascular intimal hyperplasia.

Aim Of The Study: A mouse model of atherosclerosis was used to study the relationship between the anti-intimal hyperplasia effect of Astragali Radix-Angelicae Sinensis Radix and the inhibition of VAF activation and ECM synthesis.

View Article and Find Full Text PDF

Synthetic vascular grafts are promising conduits for small caliber arteries. However, due to restenosis caused by intimal hyperplasia, they cannot keep long patency in vivo. In this work, through single cell RNA sequencing, we found that thrombospondin-1 (THBS1) was highly expressed in the regenerated smooth muscle cells (SMCs) in electrospun polycaprolactone (PCL) vascular grafts.

View Article and Find Full Text PDF

Background: Endovascular recanalization with venous stenting is the preferred treatment for iliofemoral venous obstruction. We reviewed our institutional experience and mid-term outcomes with endovascular therapy for iliofemoral venous obstruction using the Venovo Self-expanding Venous Stent (BARD Peripheral Vascular, Inc., Tempe, AZ, USA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!