Parathyroid hormone (PTH) directly interacts with bone remodeling osteoblasts and osteocytes expressing the G-protein coupled receptor PTH receptor 1 (PTH1R), and its osteoanabolic effects mostly involve the cAMP/PKA signaling cascade. Considering that PTH-dependent calcium entry in rat enterocytes is reproduced by the adenylate cyclase agonist forskolin or by cAMP analogues, possible involvement of calcium as a second messenger in PTH-dependent cAMP signaling was investigated in MG-63 cells. First, Ca influx was confirmed in Fluo3-loaded MG-63 cells treated with a cell-permeable cAMP analog. Second, PTH (1-34) and forskolin promoted calcium influxes that were completely abrogated by the PKA inhibitor H-89. Ca entry was not reproduced when PTH (1-34) was combined with the PKC-activating competitor PTH (3-34). Vanilloid transient potential (TRPV) channel inhibitor Ruthenium Red, but not a voltage-dependent calcium channel (VDCC) inhibitor nifedipine, efficiently stunted Ca entry, and comparable abrogation was reproduced in cells treated with TRPV4-selective inhibitor RN-1734 or transfected with TRPV4-specific siRNA. Interestingly, PTH-driven Ca through TRPV4 significantly inhibited MG63 cell migration through a mechanism requiring extracellular Ca. In contrast, the inhibitory effects of forskolin on migration were refractory to TRPV4 silencing or to RN-1734. Altogether, our results indicate that single treatment with PTH (1-34) promotes extracellular calcium entry through TRPV4 channels in MG-63 cells through a cAMP/PKA-dependent mechanism, and that this influx affects cell migration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cellsig.2019.109486DOI Listing

Publication Analysis

Top Keywords

mg-63 cells
16
pth 1-34
12
trpv4 channels
8
calcium entry
8
cells treated
8
cell migration
8
pth
6
cells
5
calcium
5
cyclic adenosine
4

Similar Publications

We report the in situ synthesis of silver-containing polyisocyanurate (Ag-PI) gels via the self-polymerization of isocyanate-containing organic molecules (Desmodur N75) catalyzed by silver nitrate (AgNO) in ,'-dimethylformamide, which acts as both the solvent and reducing agent. Fourier transform infrared spectroscopy and X-ray diffraction confirmed the formation of polyisocyanurate and metallic silver nanoparticles. Gelation occurred in 30 min at 30 °C for Ag-PI, compared to 24 h for the uncatalyzed system, demonstrating AgNO's catalytic role.

View Article and Find Full Text PDF

This study aims to synthesize a new localized drug delivery system of bioglass, polyvinyl alcohol (PVA), cellulose (CNC), and sodium alginate (SA) beads as a carrier for methotrexate (MTX) drugs for the treatment of osteosarcoma. Methotrexate /Bioglass-loaded Polyvinyl/Cellulose/Sodium alginate biocomposite beads were prepared via the dropwise method with different concentrations of (65%SiO-30%CaO- 5%PO) bioglass. Samples were named B0, S0, S1, S2, and S3, respectively.

View Article and Find Full Text PDF

Objectives: The present study aimed to assess the antiproliferative and pro-apoptotic effects of hinokitiol in osteosarcoma cells and targeting of glycogen synthase kinase 3 (GSK3).

Materials And Methods: The (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was used to evaluate the cytotoxic potential of hinokitiol in osteosarcoma cells. Various concentrations of hinokitiol (5, 10, 20, 40, 60, and 80 μg/mL) were tested, and the half-maximal inhibitory concentration (IC) was calculated.

View Article and Find Full Text PDF

Novel 3-sulfonamide pyrrol-2-one derivatives containing two sulfonamide groups were synthesized via a one-pot, three-component method using trifluoroacetic acid as a catalyst. Structural confirmation was achieved using spectroscopic techniques. The compounds were tested against four selected human carbonic anhydrase isoforms (hCA I, hCA II, hCA IX, and hCA XII).

View Article and Find Full Text PDF

Exosome-delivered circular RNAs (circRNAs) are recognized as a key mechanism that regulates osteosarcoma (OS) progression. The purpose of this study is to discover the role of a novel circRNA hsa_circ_0000116 from exosomes in OS progression. Transmission electron microscopy, nanoparticle tracking analysis, and western blotting were used to identify the exosomes isolated from two OS cell lines (HOS and MG-63).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!