Fusaric acid (FA) is a ubiquitous yet neglected mycotoxin. The toxicity of FA is associated with mitochondrial dysfunction and oxidative stress. Sirtuins (SIRTs) are key mediators of cell stress responses through deacetylation of antioxidant, mitochondrial maintenance and energy metabolism proteins. Dietary bioactive compounds have profound effects on SIRT activity, however little is known regarding common foodborne toxins and SIRTs. In this study the interaction of FA with mitochondrial SIRTs - SIRT3 and SIRT5, were firstly studied by molecular docking. Thereafter we substantiated the in silico findings by investigating the effect of FA on expression profiles of SIRT3 and SIRT5, and transcriptional and post-transcriptional regulators, PGC-1α and miRNA-30c using western blots and qPCR in vitro. FA was predicted to bind to the active site of SIRT3 and SIRT5 having implications for biological activity. Furthermore, protein expression of SIRT3 and SIRT5 was down-regulated despite elevated mRNA levels. Further experimentation revealed post-transcriptional regulation of both SIRTs as evidenced by elevated miRNA-30c despite induction of PGC-1α. This study highlights the potential of a diet contaminated with FA to dysregulate mitochondrial specific proteins that can lead to initiation and progression of sirtuin related diseases including cancer and insulin resistance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.toxicon.2019.11.009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!