The objective of the study was to evaluate the growth and production efficiency of forage-grain dual-purpose wheat in two arrangements and four agroforestry systems (Intercrop-I and Intercrop-II), as well as to evaluate crop management for the wheat crops in two planting seasons (Crop Season I-2014 and Crop Season II-2015. The experiment was conducted in a randomized complete block design, factorial scheme 7x2x2, with seven cultivation systems Eucalyptus urophylla x Eucalyptus grandis Intercrop-II and Intercrop-I; Peltophorum dubium Intercrop-II and Intercrop-I; P. rigida Intercrop-I; S. parahyba Intercrop-I; a wheat monoculture with no tree species present; and two harvest management techniques (with and without harvesting of the forage species). Agroforestry systems generated shading for wheat plants, with a higher phyllochron and lower values of leaf area index of those individuals kept under trees with higher crown shading (non-deciduous trees) due to the lower transmissivity of solar radiation. The systems composed with Schizolobium parahyba in Intercrop-I and Parapiptadenia rigida in Intercrop-I provide a minor phyllochron to the wheat, resulting in a higher leaf area index and dry matter yield. Thus, the cultivation of tree species and dual-skilled agricultural crops, such as wheat, provides promising alternatives for the future use of land in tropical countries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1590/0001-3765201920180667 | DOI Listing |
Sci Rep
January 2025
College of Ecology and Environment, Hainan University, Haikou, 570228, China.
Agroforestry systems are known to enhance soil health and climate resilience, but their impact on greenhouse gas (GHG) emissions in rubber-based agroforestry systems across diverse configurations is not fully understood. Here, six representative rubber-based agroforestry systems (encompassing rubber trees intercropped with arboreal, shrub, and herbaceous species) were selected based on a preliminary investigation, including Hevea brasiliensis intercropping with Alpinia oxyphylla (AOM), Alpinia katsumadai (AKH), Coffea arabica (CAA), Theobroma cacao (TCA), Cinnamomum cassia (CCA), and Pandanus amaryllifolius (PAR), and a rubber monoculture as control (RM). Soil physicochemical properties, enzyme activities, and GHG emission characteristics were determined at 0-20 cm soil depth.
View Article and Find Full Text PDFLife (Basel)
January 2025
Department of Agroforestry Sciences, Institute of Sustainable Forest Management Research UVa_INIA, E.T.S. (Higher Technical School) of Agrarian Engineering of Palencia, University of Valladolid, 34004 Palencia, Spain.
Environmental factors control the accumulation of aboveground biomass (AB) in tropical forests, along with the role of AB in climate change mitigation. As such, the objective of this study was to evaluate the influence of factors such as forest type, succession, abundance of individuals, species richness, height, diameter, texture, and soil nutrient levels on the AB in mature and postmining forests in Chocó, Colombia. Five plots each were set up in primary and postmining forests with 15 and 30 years of regeneration, in which the amount of AB was measured and related to the environmental factors.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy.
Agrofor Syst
January 2025
Net Zero and Resilient Farming, Rothamsted Research, North Wyke, Okehampton, Devon EX20 2SB UK.
Unlabelled: This study aimed to explore the knowledge and attitudes of livestock farmers from the United Kingdom regarding agroforestry planning and management issues. The farmers (n = 48) answered an online survey with demographic, open, closed and Likert scale questions. Almost half of the participants said they need more information to successfully plan and manage an agroforestry system, and self-reported low knowledge on management practices related to trees.
View Article and Find Full Text PDFTree Physiol
January 2025
Tropical Plant and Soil Sciences, College of Tropical Agriculture and Human Resources, University of Hawai'i at Mānoa, 3190 Maile Way, Honolulu, Hawai'i, USA.
Breadfruit (Artocarpus altilis) is a prolific tropical tree producing highly nutritious and voluminous carbohydrate-rich fruits. Already recognized as an underutilized crop, breadfruit could ameliorate food insecurity and protect against climate-related productivity shocks in undernourished equatorial regions. However, a lack of fundamental knowledge impedes widespread agricultural adoption, from modern agroforestry to plantation schemes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!