AI Article Synopsis

  • Baicalein (BAI) is a flavonoid with potential therapeutic benefits against various cancers, but its effects on melanoma are not well understood.
  • BAI treatment of melanoma cell lines resulted in reduced cell growth, migration, and invasion, while also inducing apoptosis, linked to changes in specific proteins and pathways.
  • The study revealed that BAI inhibits melanoma progression by down-regulating colon cancer associated transcript-1 (CCAT1), which in turn impacts the Wnt/β-catenin and MEK/ERK pathways.

Article Abstract

Baicalein (BAI) is an acknowledged flavonoids compound, which is regarded as a useful therapeutic pharmaceutical for numerous cancers. However, its involvement in melanoma is largely unknown. This study aimed to examine the anti-melanoma function of BAI and unraveled the regulatory mechanism involved. A375 and SK-MEL-28 were treated with BAI for 24 h. Then, CCK-8 assay, flow cytometry, and transwell assay were carried out to investigate cell growth, migration, and invasion. RT-qPCR was applied to detect the expression of colon cancer associated transcript-1 (CCAT1) in melanoma tissues and cells. The functions of CCAT1 in melanoma cells were also evaluated. Western blot was utilized to appraise Wnt/β-catenin or MEK/ERK pathways. BAI restrained cell proliferation and stimulated cell apoptotic capability of melanoma by suppressing cleaved-caspase-3 and cleaved-PARP. Cell migratory and invasive abilities were restrained by BAI via inhibiting MMP-2 and vimentin. CCAT1 was over-expressed in melanoma tissues and down-regulated by BAI in melanoma cells. Overexpressed CCAT1 reversed the BAI-induced anti-growth, anti-migratory, and anti-invasive effects. Furthermore, BAI inhibited Wnt/β-catenin and MEK/ERK pathways-axis via regulating CCAT1. Our study indicated that BAI blocked Wnt/β-catenin and MEK/ERK pathways via regulating CCAT1, thereby inhibiting melanoma cell proliferation, migration, and invasion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6886380PMC
http://dx.doi.org/10.1590/1414-431X20198934DOI Listing

Publication Analysis

Top Keywords

migration invasion
12
melanoma cells
12
wnt/β-catenin mek/erk
12
proliferation migration
8
melanoma
8
colon cancer
8
cancer associated
8
associated transcript-1
8
bai
8
ccat1 melanoma
8

Similar Publications

Elevated LINC00115 expression correlates with aggressive endometrial cancer phenotypes via JAK/STAT pathway modulation.

Hum Mol Genet

January 2025

Department of Reproductive Medicine, The First Affiliated Hospital of Henan University of CM, No. 19, Renmin Road, Jinshui District, Zhengzhou City, Henan Province, China.

This study systematically explores the oncogenic role of the long non-coding RNA (lncRNA) LINC00115 in endometrial cancer (EC) and reveals its unique mechanism in promoting proliferation, invasion, and metastasis via the JAK/STAT signaling pathway. LINC00115 is significantly upregulated in EC tissues and closely associated with advanced TNM staging and lymph node metastasis. Functional assays showed that knockdown of LINC00115 suppressed EC cell proliferation, invasion, and metastasis, while overexpression enhanced these malignant behaviors.

View Article and Find Full Text PDF

The 1.7 kb DRAIC long noncoding RNA inhibits tumor growth, inhibits cancer cell invasion, migration, colony formation and interacts with IKK (IκB kinase) subunits, inhibiting the phosphorylation and degradation of the NF-κB inhibitor, IκB, to suppress the activation of NF-κB. Whether these activities are all linked is unclear.

View Article and Find Full Text PDF

MFSD2A Overexpression Inhibits Hepatocellular Carcinoma Through TGF-β/Smad Signaling.

Mol Carcinog

January 2025

Department of Hepatobiliary Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.

Hepatocellular carcinoma (HCC) is a common primary malignancy of the liver and has a high mortality. Major facilitator superfamily domain containing 2 (MFSD2A) was previously demonstrated to inhibit tumor progression in several cancers. Here, we elucidated the association between MFSD2A expression and HCC progression and also investigated the underlying mechanism.

View Article and Find Full Text PDF

Whey Protein-Based Hydrogel Microspheres for Endovascular Embolization.

ACS Appl Bio Mater

January 2025

Department of Radiology, University of Minnesota, Minneapolis, Minnesota 55455, United States.

Transarterial embolization (TAE) is an image-guided, minimally invasive procedure for treating various clinical conditions by delivering embolic agents to occlude diseased arteries. Conventional embolic agents focus on vessel occlusion but can cause unintended long-term inflammation and ischemia in healthy tissues. Next-generation embolic agents must exhibit biocompatibility, biodegradability, and effective drug delivery, yet some degradable microspheres degrade too quickly, leading to the potential migration of fragments into distal blood vessels causing off-target embolization.

View Article and Find Full Text PDF

Periostin-mediated NOTCH1 activation between tumor cells and HSCs crosstalk promotes liver metastasis of small cell lung cancer.

J Exp Clin Cancer Res

January 2025

National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.

Background: Metastasis is the primary cause of mortality in small cell lung cancer (SCLC), with the liver being a predominant site for distal metastasis. Despite this clinical significance, mechanisms underlying the interaction between SCLC and liver microenvironment, fostering metastasis, remain unclear.

Methods: SCLC patient tissue array, bioinformatics analysis were performed to demonstrate the role of periostin (POSTN) in SCLC progression, metastasis, and prognosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!