As new applications for human pluripotent stem cell-derived organoids in drug screenings and tissue replacement therapies emerge, there is a need to examine the mechanisms of tissue injury and repair recently reported for various organoid models. In most cases, organoids contain the main cell types and tissues present in human organs, spatially arranged in a manner that largely resembles the architecture of the organ. Depending on the differentiation protocol used, variations may exist in cell type ratios relative to the organ of reference, and certain tissues, including some parenchymal components and the endothelium, might be poorly represented, or lacking altogether. Despite those caveats, recent studies have shown that organoid tissue injury recapitulates major events and histopathological features of damaged human tissues. In particular, major mechanisms of parenchyma cell damage and interstitial fibrosis can be reproduced with remarkable faithfulness. Although further validation remains to be done in order to establish the relevance of using organoid for either mechanistic studies or drug assays, this technology is becoming a promising tool for the study of human tissue homeostasis, injury, and repair.

Download full-text PDF

Source
http://dx.doi.org/10.1002/stem.3131DOI Listing

Publication Analysis

Top Keywords

human tissue
8
human pluripotent
8
pluripotent stem
8
stem cell-derived
8
cell-derived organoids
8
tissue injury
8
injury repair
8
tissue
5
human
5
recapitulating human
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!