A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mussel-Inspired Flexible, Wearable, and Self-Adhesive Conductive Hydrogels for Strain Sensors. | LitMetric

Mussel-Inspired Flexible, Wearable, and Self-Adhesive Conductive Hydrogels for Strain Sensors.

Macromol Rapid Commun

Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University, Wuhan, 430056, China.

Published: January 2020

The latest generation of wearable devices features materials that are flexible, conductive, and stretchable, thus meeting the requirements of stability and reliability. However, the metal conductors that are currently used in various equipments cannot achieve these high performance expectations. Hence, a mussel-inspired conductive hydrogel (HAC-B-PAM) is prepared with a facile approach by employing polyacrylamide (PAM), dopamine-functionalized hyaluronic acid (HAC), borax as a dynamic cross-linker agent, and Li and Na as conductive ions. HAC-B-PAM hydrogels demonstrate an excellent stretchability (up to 2800%), high tensile toughness (42.4 kPa), self-adhesive properties (adhesion strength to porcine skin of 49.6 kPa), and good self-healing properties without any stimuli at room temperature. Furthermore, the fabricated hydrogel-based strain sensor is sensitive to deformation and can detect human body motion. Multifunctional hydrogels can be assembled into flexible wearable devices with potential applications in the field of electronic skin and soft robotics.

Download full-text PDF

Source
http://dx.doi.org/10.1002/marc.201900450DOI Listing

Publication Analysis

Top Keywords

flexible wearable
8
wearable devices
8
mussel-inspired flexible
4
wearable self-adhesive
4
conductive
4
self-adhesive conductive
4
conductive hydrogels
4
hydrogels strain
4
strain sensors
4
sensors latest
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!