The dipluran two-pronged bristletail Campodea augens is a blind ancestrally wingless hexapod with the remarkable capacity to regenerate lost body appendages such as its long antennae. As sister group to Insecta (sensu stricto), Diplura are key to understanding the early evolution of hexapods and the origin and evolution of insects. Here we report the 1.2-Gb draft genome of C. augens and results from comparative genomic analyses with other arthropods. In C. augens, we uncovered the largest chemosensory gene repertoire of ionotropic receptors in the animal kingdom, a massive expansion that might compensate for the loss of vision. We found a paucity of photoreceptor genes mirroring at the genomic level the secondary loss of an ancestral external photoreceptor organ. Expansions of detoxification and carbohydrate metabolism gene families might reflect adaptations for foraging behavior, and duplicated apoptotic genes might underlie its high regenerative potential. The C. augens genome represents one of the key references for studying the emergence of genomic innovations in insects, the most diverse animal group, and opens up novel opportunities to study the under-explored biology of diplurans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6938034PMC
http://dx.doi.org/10.1093/gbe/evz260DOI Listing

Publication Analysis

Top Keywords

ancestrally wingless
8
campodea augens
8
studying emergence
8
genome blind
4
blind soil-dwelling
4
soil-dwelling ancestrally
4
wingless dipluran
4
dipluran campodea
4
augens key
4
key reference
4

Similar Publications

Evolution of insect metamorphosis - an update.

Curr Opin Insect Sci

February 2025

Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic. Electronic address:

Metamorphosis endowed the insects with properties that enabled them to conquer the Earth. It is a hormonally controlled morphogenetic process that transforms the larva into the adult. Metamorphosis appeared with the origin of wings and flight.

View Article and Find Full Text PDF

In this review, we show that predatory ants have a wide range of foraging behavior, something expected given their phylogenetic distance and the great variation in their colony size, life histories, and nesting habitats as well as prey diversity. Most ants are central-place foragers that detect prey using vision and olfaction. Ground-dwelling species can forage solitarily, the ancestral form, but generally recruit nestmates to retrieve large prey or a group of prey.

View Article and Find Full Text PDF

In many animal species, larger body size is positively correlated with male mating success and female fecundity. However, in the case of insects, in high seasonality environments, natural selection favors a faster maturation that decreases the risk of pre-reproductive death. However, this advantageous adaptation comes at a tradeoff, resulting in a reduction in body size.

View Article and Find Full Text PDF

Cave crickets (Rhaphidophoridae) are insects of an ancient and wingless lineage within Orthoptera that are distributed worldwide except in Antarctica, and each subfamily has a high level of endemicity. Here, we show the comprehensive phylogeny of cave crickets using multi-gene datasets from mitochondrial and nuclear loci, including all extant subfamilies for the first time. We reveal phylogenetic relationships between subfamilies, including the sister relationship between Anoplophilinae and Gammarotettiginae, based on which we suggest new synapomorphies.

View Article and Find Full Text PDF

This paper discusses methods to take into account interactions between characters, in the context of parsimony analysis. These interactions can be in the form of some characters becoming inapplicable given certain states of other, primary characters; in the form of only certain states being allowed in some characters when a given state or set of states occurs for other characters; or in the form of transformation costs in some character being higher or lower when other characters have certain states or transformations between states. Character-state reconstructions and evaluation of trees under the assumption of independence may easily lead to ancestral assignments that violate elementary rules of biomechanics, well-established theories relating form and function or ideas about character co-variation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!