Titanium-based oxides including TiO and M-Ti-O compounds (M = Li, Nb, Na, etc.) family, exhibit advantageous structural dynamics (2D ion diffusion path, open and stable structure for ion accommodations) for practical applications in energy storage systems, such as lithium-ion batteries, sodium-ion batteries, and hybrid pseudocapacitors. Further, Ti-based oxides show high operating voltage relative to the deposition of alkali metal, ensuring full safety by avoiding the formation of lithium and sodium dendrites. On the other hand, high working potential prevents the decomposition of electrolyte, delivering excellent rate capability through the unique pseudocapacitive kinetics. Nevertheless, the intrinsic poor electrical conductivity and reaction dynamics limit further applications in energy storage devices. Recently, various work and in-depth understanding on the morphologies control, surface engineering, bulk-phase doping of Ti-based oxides, have been promoted to overcome these issues. Inspired by that, in this review, the authors summarize the fundamental issues, challenges and advances of Ti-based oxides in the applications of advanced electrochemical energy storage. Particularly, the authors focus on the progresses on the working mechanism and device applications from lithium-ion batteries to sodium-ion batteries, and then the hybrid pseudocapacitors. In addition, future perspectives for fundamental research and practical applications are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.201904740DOI Listing

Publication Analysis

Top Keywords

energy storage
16
batteries hybrid
12
hybrid pseudocapacitors
12
ti-based oxides
12
advanced electrochemical
8
electrochemical energy
8
practical applications
8
applications energy
8
lithium-ion batteries
8
batteries sodium-ion
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!