Objectives: Microleakage is the most important factor responsible for the destruction of restoration margins. The aim of this study was to assess the effect of mechanical load cycling on microleakage of four types of glass ionomer cement (GIC) in comparison with a flowable composite resin.
Materials And Methods: In this in-vitro experimental study, 100 Class V cavities were prepared on the buccal and lingual surfaces of 50 intact premolars. The prepared cavities were divided into five groups of (A) Z350, (B) Equia Forte, (C) encapsulated Fuji II LC, (D) hand-mixed Fuji II LC, and (E) Ketac Molar. All the samples were thermocycled (×2,000, 5-55°C), and half of the samples in each group were load cycled. All the teeth were then immersed in 0.5% basic fuchsine for 24 hours, sectioned, and observed under a stereomicroscope. Data were analyzed with Kruskal-Wallis and Mann-Whitney-U tests. Comparison between the incisal and gingival microleakage was made with Wilcoxon test. P<0.05 was considered statistically significant.
Results: Load cycling and type of restorative material had a significant effect on microleakage. Gingival microleakage was significantly higher than occlusal microleakage with Equia Forte, encapsulated Fuji II LC, hand-mixed Fuji II LC, and Ketac Molar in the absence of loading, and with Z350 after loading.
Conclusion: The sealing ability of Z350 under load cycling was better than that of Equia Forte, hand-mixed Fuji II LC, and Ketac Molar. The marginal integrity of encapsulated Fuji II LC was not significantly different than that of Z350.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6874843 | PMC |
http://dx.doi.org/10.18502/fid.v16i2.1365 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!