The phosphate transporters LpPHT1;1 and LpPHT1;4 have different roles in phosphate uptake and translocation in ryegrass under P stress condition. The phosphate transporter 1 (PHT1) family are integral membrane proteins that operate in phosphate uptake, distribution and remobilization within plants. In this study, we report on the functional characterization and expression of two PHT1 family members from ryegrass plants (Lolium perenne L.) and determine their roles in the specificity of Pi transport. The expression level of LpPHT1;4 was strongly influenced by phosphorus (P) status, being higher under P-starvation condition. In contrast, the expression level of LpPHT1;1 was not correlated with P supply. Yeast mutant complementation assays showed that LpPHT1;4 can complement the growth defect of the yeast mutant Δpho84 under Pi-deficient conditions, whereas the yeast mutant expressing LpPHT1;1 was not able to restore growth. Phylogenetic and molecular analyses indicated high sequence similarity to previously identified PHT1s from other species in the Poaceae. These results suggest that LpPHT1;1 may function as a low-affinity Pi transporter, whereas LpPHT1;4 could acts as a high-affinity Pi transporter to maintain Pi homeostasis under stress conditions in ryegrass plants. This study will form the basis for the long-term goal of improving the phosphate use efficiency of ryegrass plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00425-019-03313-0 | DOI Listing |
Int J Biol Macromol
December 2024
Henan Provincial Engineering Research Center for Development and Application of Characteristic Microorganism Resources, Dried Chili Industry Technology Research Center, Department of Biology and Food Science, Shangqiu Normal University, Shangqiu, Henan 476000, China. Electronic address:
Plants frequently encounter phosphate (Pi) starvation due to its scarce availability in soil, necessitating an adaptive phosphate starvation response (PSR). This study explores this adaptation in pepper (Capsicum annuum L.) under low-Pi stress, focusing on the PHOSPHATE STARVATION RESPONSE (PHR) gene family.
View Article and Find Full Text PDFProtoplasma
December 2024
Laboratory of Extremophile Plants, Centre of Biotechnology of Borj-Cedria, Hammam-Lif, Tunisia.
Phosphorus (P) is a macronutrient that plays a crucial role in critical plant functions. Phosphate transporters (PHTs) ensure the acquisition and translocation of Pi in the plant, thereby playing a key role in maintaining normal plant growth under Pi deficiency conditions. In Brachypodium distachyon, the grass model system, the function of individual PHT genes, remains largely unknown.
View Article and Find Full Text PDFPlant Physiol Biochem
October 2023
State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Co-sponsored by Province and Ministry, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China. Electronic address:
Phosphorus is an essential macronutrient element for productivity of crop ecosystems. But orthophosphate (Pi), the direct uptake form by plants, is found in low solubility in soil, leading to plants often suffer from Pi starvation when they grow. High-affinity Pi transporters (PTs) play roles in Pi starvation response (PSR), and they are the main Pi influx machinery.
View Article and Find Full Text PDFPlant Cell Environ
December 2024
School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia.
Heavy and costly use of phosphorus (P) fertiliser is often needed to achieve high crop yields, but only a small amount of applied P fertiliser is available to most crop plants. Hakea prostrata (Proteaceae) is endemic to the P-impoverished landscape of southwest Australia and has several P-saving traits. We identified 16 members of the Phosphate Transporter 1 (PHT1) gene family (HpPHT1;1-HpPHT1;12d) in a long-read genome assembly of H.
View Article and Find Full Text PDFBiomolecules
June 2024
Department of Nephrology and Hypertension, Inselspital, University of Bern, Kinderklinik, Freiburgstrasse 15, 3010 Bern, Switzerland.
The peptide/histidine transporter PHT1 () is expressed in the lysosomal membranes of immune cells where it plays an important role in metabolic and inflammatory signaling. PHT1 is an H-coupled/histidine symporter that can transport a wide range of oligopeptides, including a variety of bacterial-derived peptides. Moreover, it enables the scaffolding of various metabolic signaling molecules and interacts with key regulatory elements of the immune response.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!