AI Article Synopsis

  • In multiple myeloma (MM) patients, the use of 18F-FDG-PET/CT imaging helps track disease spread and assess metabolic tumor burden through visual and volumetric measures.
  • A study of 47 stage IIIA patients revealed significant differences in various parameters like maximum standardized uptake value and metabolic tumor volume (MTV) between those who experienced disease progression or death and those who did not.
  • The findings suggest that a specific MTV cutoff of 39.4 ml can effectively predict progression-free survival (PFS) and overall survival (OS), highlighting the importance of volume-based analysis in managing MM.

Article Abstract

In multiple myeloma (MM) patients, 18F-FDG-PET/CT allows either the detection of disease spread by using visual parameters based on the Italian Myeloma criteria for PET Use (IMPeTUs) or the direct measurement of metabolic tumor burden by volume-based parameters such as metabolic tumor volume (MTV). The purpose is to evaluate the contribution of visual and volumetric parameters in the prediction of progression-free survival (PFS) and overall survival (OS) in MM patients. Forty-seven patients in stage IIIA who had undergone whole-body 18F-FDG-PET/CT were retrospectively evaluated. In each patient, visual parameters were determined and compared with volumetric parameters for PFS and OS prediction after a mean follow-up period of 53 months. Among the visual and volumetric parameters tested, a statistically significant difference was found between maximum standardized uptake value, MTV, total lesion glycolysis, and number of lytic lesions of patients with (n = 26) or without (n = 21) progression (p = 0.0400, p = 0.0065, p = 0.015, and p = 0.0220, respectively) and of dead (n = 24) vs survivors (n = 23) (p = 0.0171, p = 0.0037, p = 0.0060, and p = 0.0270, respectively). At univariate and multivariate analysis, MTV and hemoglobin were predictive of both PFS (p = 0.008) and OS (p = 0.0026). The best MTV discriminative value assessed by receiver operating characteristic curve analysis for predicting both PFS and OS was 39.4 ml. By Kaplan-Meier analysis and log-rank test, PFS and OS were significantly better in patients with MTV ≤ 39.4 ml (p = 0.0004 and p = 0.0001, respectively) as compared with those having an MTV higher than the cutoff. The volume-based parameter MTV determined by 18F-FDG-PET/CT may be used in the prediction of PFS and OS in myeloma patients.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00277-019-03852-2DOI Listing

Publication Analysis

Top Keywords

volumetric parameters
16
visual volumetric
12
multiple myeloma
8
myeloma patients
8
visual parameters
8
metabolic tumor
8
parameters
7
patients
7
mtv
6
pfs
6

Similar Publications

Degeneration of the nucleus pulposus affects the internal volumetric strains and failure location of adjacent human metastatic vertebral bodies.

Acta Biomater

January 2025

Department of Industrial Engineering, School of Engineering and Architecture, University of Bologna, Viale del Risorgimento 2, 40136, Bologna, Italy. Electronic address:

Intervertebral disc (IVD) degeneration is suspected to affect the distribution of stress and strain near the vertebral endplates and in the underlying bone. This scenario is worsened by the presence of metastatic lesions on the vertebrae (primarily thoracic vertebrae (60-80%)) which increase the risk of fracture. As such, this study aimed to evaluate the effect of IVD degeneration on the internal volumetric strains and failure modes of human metastatic vertebral bodies.

View Article and Find Full Text PDF

Size Matters: Predicting Surgical Site Infection After Whole Breast Radiotherapy in the Era of Hypofractionation.

J Clin Med

December 2024

Department of Radiation Oncology, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 14647, Republic of Korea.

: Few studies have analyzed surgical site infections associated with hypofractionated RT. The purpose of this study was to identify risk factors for surgical site infections with a particular focus on volumetric parameters that reflect the size of the volumes treated, including tumors, surgical cavities, and breasts. : A total of 145 early breast cancer patients who were surgically staged 0-II undergoing hypofractionated RT on the whole breast were retrospectively reviewed.

View Article and Find Full Text PDF

Objective: To prospectively evaluate the effect of accelerated deep learning-based reconstruction (Accel-DL) on improving brain magnetic resonance imaging (MRI) quality and reducing scan time compared to that in conventional MRI.

Materials And Methods: This study included 150 participants (51 male; mean age 57.3 ± 16.

View Article and Find Full Text PDF

Background: This study aimed to investigate the effect of couch rotation angles on non-coplanar volumetric modulated arc therapy (ncVMAT) plan for stereotactic body radiotherapy (SBRT) in lung cancer patients and to evaluate the feasibility of clinically applying ncVMAT for SBRT.

Methods: Twenty-four lung cancer patients with a single lesion eligible for SBRT were enrolled in the study. Seven dual partial-arc VMAT plans with varying couch angles were designed for every patient.

View Article and Find Full Text PDF

Background: Mixed exhaled air has been widely used to determine exhaled propofol concentrations with online analyzers, but changes in dead space proportions may lead to inaccurate assessments of critical drug concentration data. This study proposes a method to correct propofol concentration in mixed air by estimating pulmonary dead space through reconstructing volumetric capnography (Vcap) from time-CO and time-volume curves, validated with vacuum ultraviolet time-of-flight mass spectrometry (VUV-TOF MS).

Methods: Existing monitoring parameters, including time-volume and time-CO curves, were used to determine Vcap.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!