Phenolic oxidative coupling protein (Hyp-1) isolated from Hypericum perforatum L. was characterized as a defense gene involved in H. perforatum recalcitrance to Agrobacterium tumefaciens-mediated transformation Hypericum perforatum L. is a reservoir of high-value secondary metabolites of increasing interest to researchers and to the pharmaceutical industry. However, improving their production via genetic manipulation is a challenging task, as H. perforatum is recalcitrant to Agrobacterium tumefaciens-mediated transformation. Here, phenolic oxidative coupling protein (Hyp-1), a pathogenesis-related (PR) class 10 family gene, was selected from a subtractive cDNA library from A. tumefaciens-treated H. perforatum suspension cells. The role of Hyp-1 in defense against A. tumefaciens was analyzed in transgenic Nicotiana tabacum and Lactuca sativa overexpressing Hyp-1, and in Catharanthus roseus silenced for its homologous Hyp-1 gene, CrIPR. Results showed that Agrobacterium-mediated expression efficiency greatly decreased in Hyp-1 transgenic plants. However, silencing of CrIPR induced CrPR-5 expression and decreased expression efficiency of Agrobacterium. The expression of core genes involved in several defense pathways was also analyzed in Hyp-1 transgenic tobacco plants. Overexpression of Hyp-1 led to an ample down-regulation of key genes involved in auxin signaling, microRNA-based gene silencing, detoxification of reactive oxygen species, phenylpropanoid pathway and PRs. Moreover, Hyp-1 was detected in the nucleus, plasma membrane and the cytoplasm of epidermal cells by confocal microscopy. Overall, our findings suggest Hyp-1 modulates recalcitrance to A. tumefaciens-mediated transformation in H. perforatum.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00425-019-03310-3DOI Listing

Publication Analysis

Top Keywords

hypericum perforatum
12
tumefaciens-mediated transformation
12
hyp-1
11
hyp-1 gene
8
modulates recalcitrance
8
recalcitrance agrobacterium
8
phenolic oxidative
8
oxidative coupling
8
coupling protein
8
protein hyp-1
8

Similar Publications

In this study, two high-content flavonoid derivatives [3-8 biapigenin (HM 104) and quercetin-3--β--galactopyranoside (HM 111)] were obtained through the bioactivity-guided isolation of antidiabetic compounds from flowers. HM 104 and HM 111 exhibited good glucose consumption in fatty acid-induced insulin-resistant HepG2 cells. Moreover, both active compounds enhanced glucose uptake by restoring the expression of key regulators of glucose metabolism, including insulin receptor substrate 1, phosphoinositide 3-kinase, protein kinase B, and glucose transporter type 4, and by mitigating the expression of forkhead box O1 and the factors involved in gluconeogenesis.

View Article and Find Full Text PDF

Three new xanthones and other anti-inflammatory components from the aerial parts of Hypericum beanii.

Arch Pharm Res

December 2024

School of Pharmacy, Anhui Medical University, No.81 Meishan Road Shushan District, Hefei, 230032, Anhui, China.

Hypericum beanii, a traditional folk medicine plant, has been employed in treating various inflammation-related diseases. In this study, three new prenylated xanthones, named beanigenin A (1), beanigenin B (2), and beanigenin C (3), along with twenty-five known compounds (4-28), were isolated from the aerial parts of H. beanii.

View Article and Find Full Text PDF

Anti-leishmanial activity of Hypericum Scabrum extract against Leishmania major.

AMB Express

December 2024

Department of Parasitology and Mycology, School of Allied Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran.

Leishmaniasis is a vector-borne disease and one of the most significant neglected tropical diseases. Current anti-leishmanial treatments are often ineffective over extended periods and are associated with toxic side effects, highlighting the urgent need for new, effective, and safe alternative treatments for this infectious disease. The objective of this study was to evaluate the anti-leishmanial effects of a hydroalcoholic extract of Hypericum scabrum (H.

View Article and Find Full Text PDF

Chronic stress is a key factor in the development of depression. It leads to hyperactivation of the hypothalamic-pituitary-adrenal (HPA) axis, which in turn increases the formation of glucocorticoids (GCs). Chronically elevated GC levels disrupt neuroplasticity and affect brain lipid metabolism, which may, ultimately, contribute to the development of depression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!