A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The targeted design of dual-functional metal-organic frameworks (DF-MOFs) as highly efficient adsorbents for Hg ions: synthesis for purpose. | LitMetric

Designing adsorbents with accessible chelating sites and achieving high contaminant purification efficiency are still important to overcome environmental remediation challenges. As one of the significant global concerns, the presence of heavy metal ions in the environment has attracted increasing attention due to their toxicity, carcinogenicity, and bioaccumulation in the food chain. Herein, we performed a targeted design of a new dual-functionalized metal-organic framework (DF-MOF) by incorporating different percentages of the N1,N3-di(pyridine-4-yl) malonamide ligand (S) into urea-containing MOF (TMU-32); the produced material was labeled as TMU-32S (with 33%, 65%, and 100% incorporation percentages). Designing DF-MOF is our "design-for-purpose" approach for the decoration of MOF walls by suitable functional groups, resulting in high removal capacity of heavy metal ions. Among the TMU-32S series having different concentrations of the S ligand, TMU-32S-65% demonstrated exceptional Hg ion selectively. To the best of our knowledge, this is the first report of mixed urea-malonamide-based MOF, which provides a proper coordination site to strongly coordinate with Hg ions, along with 1428 mg g maximum adsorption capacity. Generally, we attributed the impressive implementation of TMU-32S-65% to the synergistic effects of both hydrophilic chelating urea and the malonamide functional group. Hence, the results reported in this work indicate the exceptional potential of DF-MOFs for the high accomplishment of environmental remediation.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9dt03933cDOI Listing

Publication Analysis

Top Keywords

targeted design
8
environmental remediation
8
heavy metal
8
metal ions
8
design dual-functional
4
dual-functional metal-organic
4
metal-organic frameworks
4
frameworks df-mofs
4
df-mofs highly
4
highly efficient
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!