Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The pleasure of music listening regulates daily behaviour and promotes rehabilitation in healthcare. Human behaviour emerges from the modulation of spontaneous timely coordinated neuronal networks. Too little is known about the physical properties and neurophysiological underpinnings of music to understand its perception, its health benefit and to deploy personalized or standardized music-therapy. Prior studies revealed how macroscopic neuronal and music patterns scale with frequency according to a 1/f relationship, where a is the scaling exponent. Here, we examine how this hallmark in music and neuronal dynamics relate to pleasure. Using electroencephalography, electrocardiography and behavioural data in healthy subjects, we show that music listening decreases the scaling exponent of neuronal activity and-in temporal areas-this change is linked to pleasure. Default-state scaling exponents of the most pleased individuals were higher and approached those found in music loudness fluctuations. Furthermore, the scaling in selective regions and timescales and the average heart rate were largely proportional to the scaling of the melody. The scaling behaviour of heartbeat and neuronal fluctuations were associated during music listening. Our results point to a 1/f resonance between brain and music and a temporal rescaling of neuronal activity in the temporal cortex as mechanisms underlying music appreciation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6881362 | PMC |
http://dx.doi.org/10.1038/s41598-019-54060-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!