Oxaliplatin is a first-line clinical drug in cancer treatment and its side effects of peripheral neuropathic pain have also attracted much attention. Neuroinflammation induced by oxidative stress-mediated activation of nuclear factor-kappa B (NF-κB) plays an important role in the course. Current studies have shown that curcumin has various biological activities like antioxidant, anti-inflammatory, antitumor and so on, while few studies were conducted about its role in oxaliplatin-induced peripheral neuropathic pain. The aim of this study is to verify the mechanism of curcumin alleviating oxaliplatin-induced peripheral neuropathic pain. Intraperitoneal injection with oxaliplatin (4 mg/kg body weight) was given to the rats twice a week and last for four weeks to establish the model rats. Gavage administration of curcumin (12.5, 25, and 50 mg/kg body weight, respectively) was conducted for consecutive 28 d to explore the effects and potential mechanism. Our results showed that curcumin administration could increase mechanical withdrawal threshold and decrease the paw-withdrawal times of cold allodynia significantly; meanwhile, motor nerve conduction velocity (MNCV) and sense nerve conduction velocity (SNCV) were both increased and the injured neurons of the spinal cord were repaired. In addition, curcumin administration increased superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT) and reduced malondialdehyde (MDA). Moreover, the curcumin operation inhibited the activated of NF-κB and level of inflammatory factors like tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6). In conclusion, these findings suggested that curcumin could alleviate oxaliplatin-induced peripheral neuropathic pain; the mechanism might be inhibiting oxidative stress-mediated activation of NF-κB and mitigating neuroinflammation.

Download full-text PDF

Source
http://dx.doi.org/10.1248/bpb.b19-00862DOI Listing

Publication Analysis

Top Keywords

peripheral neuropathic
20
neuropathic pain
20
oxaliplatin-induced peripheral
16
oxidative stress-mediated
12
stress-mediated activation
12
curcumin
8
inhibiting oxidative
8
activation nf-κb
8
nf-κb mitigating
8
mechanism curcumin
8

Similar Publications

Electroacupuncture alleviates paclitaxel-induced peripheral neuropathy by reducing CCL2-mediated macrophage infiltration in sensory ganglia and sciatic nerve.

Chin Med

January 2025

Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China.

Background: Paclitaxel-induced peripheral neuropathy (PIPN) is prevalent among patients receiving paclitaxel chemotherapy, which results in sensory abnormality as well as neuropathic pain. Conventional medications lack effectiveness on PIPN. Clinical trials identified beneficial effects of acupuncture on PIPN among patients receiving chemotherapy.

View Article and Find Full Text PDF

Small Fibre Pathology in Fibromyalgia: A review.

Pain Ther

January 2025

Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, Clinical Sciences Centre, University Hospital Aintree, University of Liverpool and Liverpool University Hospital NHS Foundation Trust, Liverpool, L9 7AL, UK.

Fibromyalgia syndrome (FMS) presents a complex and challenging disorder in both the diagnosis and treatment, with emerging evidence suggesting a role of small fibre pathology (SFP) in its pathophysiology. The significance of the role of SFP in FMS remains unclear; however, recent evidence suggests degeneration and dysfunction of the peripheral nervous system, particularly small unmyelinated fibres, which may influence pathophysiology and underlying phenotype. Both skin biopsy and corneal confocal microscopy (CCM) have consistently demonstrated that ~ 50% of people with FMS have SFP.

View Article and Find Full Text PDF

Diabetic peripheral neuropathy (DPN) is a common complication of diabetes in both Type 1 (T1D) and Type 2 (T2D). While there are no specific medications to prevent or treat DPN, certain strategies can help halt its progression. In T1D, maintaining tight glycemic control through insulin therapy can effectively prevent or delay the onset of DPN.

View Article and Find Full Text PDF

Neuropathic pain (NP) and cancer are caused by nerve damage due to cancer or treatments such as chemotherapy, radiotherapy, and surgery, with a prevalence that can reach up to 40%. Causes of neuropathic cancer pain (NCP) include direct nerve invasion or compression by the tumor, as well as neural toxicity associated with treatments. This type of pain is classified into several categories, such as plexopathy, radiculopathy, and peripheral neuropathies.

View Article and Find Full Text PDF

Dysregulation of GABAergic inhibition is associated with pathological pain. Consequently, enhancement of GABAergic transmission represents a potential analgesic strategy. However, therapeutic potential of current GABA agonists and modulators is limited by unwanted side effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!