Incidence of seriously injured road users in a Swedish region, 2003-2014, from the perspective of a national road safety policy.

BMC Public Health

School of Health, Care and Social Welfare, Mälardalen University, Box 883, SE-721 23, Västerås, Sweden.

Published: November 2019

Background: Since 1997 Sweden has a policy for road safety called Vision Zero. Given that Vision Zero is mainly used to reduce fatalities among car occupants, the question has been raised by the research community whether a Vision Zero approach promotes health for all road traffic users. The objective is to measure target fulfilment of the national road safety policy for a Swedish region by examining incidence of serious injury during 2003-2014 in rural and urban road spaces with or without implemented measures.

Methods: Data on seriously injured road users, defined as ISS > 8 (Injury Severity Score), were retrieved from STRADA (Swedish Traffic Accident Data Acquisition) together with data from NVDB (National Road Database). These data are used to describe where road users are seriously injured in relation to implemented national policy and using a conceptual model of a road space comprising roads, pavements and tracks for walking and cycling. Seriously injured road users in single and multiple crashes with and without vehicles are included. The development of the incidence is analysed for different road users and places in the road space.

Results: Despite implemented road safety measures in the region, the incidence of seriously injured road users per 100,000 inhabitants in rural areas increased from 7.8 in 2003 to 9.3 in 2014 but doubled in urban areas from 8.0 in to 16.3 respectively. In areas not transformed by Vision Zero, only 36% were injured in rural areas while 64% were injured in urban areas. In contrast, in transformed areas 61% of injuries occurred in rural areas, whereas 39% occurred in urban areas. While the incidence decreased for car occupants on transformed national roads in rural areas, the incidence of serious injuries increased among unprotected road users in urban areas, in particular on pavements and tracks for cycling and walking than on the roads where Vision Zero had been implemented.

Conclusion: The reduction in the incidence for car occupants in the region may not be adequate to contribute to fulfilling the national target. More needs to be done, especially in the urban areas, where more active mobility is desired.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6882055PMC
http://dx.doi.org/10.1186/s12889-019-7937-0DOI Listing

Publication Analysis

Top Keywords

road users
28
seriously injured
20
urban areas
20
road
16
injured road
16
road safety
16
rural areas
16
national road
12
car occupants
12
areas
11

Similar Publications

Background: Road-related injuries and deaths are among the most significant and avoidable public health problems in Canada. Modifications to the built environment (BE) can reduce injury rates for vulnerable road users (VRUs) and other priority populations who experience disproportionate risk. This paper highlights public health professionals' experiences working in injury prevention across Ontario public health units (PHUs) navigating barriers and facilitators to BE change.

View Article and Find Full Text PDF

OPMS - A web-based ocean pollution monitoring system.

Mar Pollut Bull

January 2025

University of Victoria, 3800 Finnerty Road, Victoria, BC V8W 2Y2, Canada. Electronic address:

Marine pollution poses significant risks to both marine ecosystems and human health, requiring effective monitoring and control measures. This study presents the Ocean Pollution Monitoring System (OPMS), a web application designed to visualize the seasonal and annual fluctuations of marine pollutants along coastal regions in Canada. The pollutants include fecal coliform and biotoxins such as paralytic shellfish poisoning (PSP), and amnesic shellfish poisoning (ASP).

View Article and Find Full Text PDF

The rapid development of Internet of Things technology has promoted the popularization of Internet of Vehicles, and its safety and reliability have become the focus of intelligent transportation system research. Vehicle-road collaboration relies on the collaborative computing and storage resources of the vehicle on-board unit (OBU), which are usually limited. When the vehicle in the edge area needs to do computing tasks such as intelligent driving, but its own computing resources are insufficient.

View Article and Find Full Text PDF

The iPhylo suite: an interactive platform for building and annotating biological and chemical taxonomic trees.

Brief Bioinform

November 2024

MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 866 Yuhangtang Road, Xihu District, Hangzhou, Zhejiang 310030, China.

Accurate and rapid taxonomic classifications are essential for systematically exploring organisms and metabolites in diverse environments. Many tools have been developed for biological taxonomic trees, but limitations apply, and a streamlined method for constructing chemical taxonomic trees is notably absent. We present the iPhylo suite (https://www.

View Article and Find Full Text PDF

Background: Prolonged dependence on mechanical ventilation is a common occurrence in clinical ICU patients and presents significant challenges for patient care and resource allocation. Predicting prolonged dependence on mechanical ventilation is crucial for improving patient outcomes, preventing ventilator-associated complications, and guiding targeted clinical interventions. However, specific tools for predicting prolonged mechanical ventilation among ICU patients, particularly those with critical orthopaedic trauma, are currently lacking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!