Photoredox-catalyzed synthesis of sulfones through deaminative insertion of sulfur dioxide.

Chem Commun (Camb)

School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China. and State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.

Published: December 2019

Katritzky salts are used as the alkyl radical precursors with the insertion of sulfur dioxide under photoredox catalysis. This transformation first enables direct generation of various alkylsulfonyl radicals by photoinduced single electron reduction, leading to diverse dialkyl sulfones in good to excellent yields. A radical pathway is proposed under visible-light induced conditions with the insertion of sulfur dioxide.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9cc08333bDOI Listing

Publication Analysis

Top Keywords

insertion sulfur
12
sulfur dioxide
12
photoredox-catalyzed synthesis
4
synthesis sulfones
4
sulfones deaminative
4
deaminative insertion
4
dioxide katritzky
4
katritzky salts
4
salts alkyl
4
alkyl radical
4

Similar Publications

Metal-organic frameworks (MOFs) are hybrid inorganic-organic 3D coordination polymers with metal sites and organic linkers, which are a "hot" topic in the research of sorption, separations, catalysis, sensing, and environmental remediation. In this study, we explore the molecular mechanism and kinetics of interaction of the new copper porphyrin aluminum metal-organic framework (actAl-MOF-TCPPCu) compound with a vapor of the volatile organic sulfur compound (VOSC) diethyl sulfide (DES). First, compound was synthesized by post-synthetic modification (PSM) of Al-MOF-TCPPH compound by inserting Cu ions into the porphyrin ring and characterized by complementary qualitative and quantitative chemical, structural, and spectroscopic analysis.

View Article and Find Full Text PDF

Solution processable triarylamine-based polyamide for electrochromic supercapacitors and smart displays with energy reuse.

J Colloid Interface Sci

January 2025

College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, China. Electronic address:

Electrochromic (EC) materials based on ion insertion/desertion mechanisms provide a possibility for energy storage. Solution-processable energy storage EC polyamides have great potential for use in smart displays and EC supercapacitors. A suitable monomer structure design is particularly important for enhancing the electrochemical properties of polyamides.

View Article and Find Full Text PDF

Direct Observation of Hybridization Between Co 3d and S 2p Electronic Orbits: Moderating Sulfur Covalency to Pre-Activate Sulfur-Redox in Lithium-Sulfur Batteries.

Adv Sci (Weinh)

December 2024

Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, Heilongjiang, 150025, China.

Lithium-sulfur batteries (LSBs) offer high energy density and environmental benefits hampered by the shuttle effect related to sluggish redox reactions of long-chain lithium polysulfides (LiPSs). However, the fashion modification of the d-band center in separators is still ineffective, wherein the mechanism understanding always relies on theoretical calculations. This study visibly probed the evolution of the Co 3d-band center during charge and discharge using advanced inverse photoemission spectroscopy/ultraviolet photoemission spectroscopy (IPES/UPS), which offers reliable evidence and are consistent well with theoretical calculations.

View Article and Find Full Text PDF

Roles of the Polymer Backbone for Sulfurized Polyacrylonitrile Cathodes in Rechargeable Lithium Batteries.

J Am Chem Soc

December 2024

School of Materials Science and Engineering, Department of Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.

Sulfurized polyacrylonitrile (SPAN) has emerged as a highly promising cathode material for next-generation lithium-sulfur (Li-S) batteries primarily due to its non-polysulfide dissolution and excellent cycle stability. Nevertheless, the specific roles and impacts of the pyrolyzed polyacrylonitrile, which constitutes the polymer backbone of SPAN, remain inadequately understood. In this study, comprehensive investigations from multiple aspects, including electrochemistry, spectroscopy, electron microscopy, and theoretical calculations, were conducted on a series of SPAN materials with various sulfur contents.

View Article and Find Full Text PDF

The pathway of bacterial cysteine biosynthesis is gaining traction for the development of antibiotic adjuvants. Bacterial cysteine biosynthesis is generally facilitated by two enzymes possessing -acetyl-l-serine sulfhydrylases (OASS), CysK and CysM. In , there exists a single OASS homologue, CysK.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!