A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ac-LysargiNase Complements Trypsin for the Identification of Ubiquitinated Sites. | LitMetric

Ac-LysargiNase Complements Trypsin for the Identification of Ubiquitinated Sites.

Anal Chem

State Key Laboratory of Proteomics , Beijing Proteome Research Center , National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug, Institute of Lifeomics, Beijing 102206 , P. R. China.

Published: December 2019

Mass spectrometry (MS)-based identification of ubiquitinated sites requires trypsin digestion prior to MS analysis, and a signature peptide was produced with a diglycine residue attached to the ubiquitinated lysine (K-ε-GG peptide). However, the missed cleavage of modified lysines by trypsin results in modified peptides with increased length and charge, whose detection by MS analysis is suppressed by the vast majority of internally unmodified peptides. LysargiNase, the mirrored trypsin, is reported to cleave before lysine and arginine residues and to be favorable for the identification of methylation and phosphorylation, but its digestive characteristics related to ubiquitination are unclear. Herein, we tested the capacity of the in-house developed acetylated LysargiNase (Ac-LysargiNase) with high activity and stability, for cleaving ubiquitinated sites in both the seven types of ubiquitin chains and their corresponding K-ε-GG peptides. Interestingly, Ac-LysargiNase could efficiently cleave the K63-linked chain but had little effect on the other types of chains. Additionally, Ac-LysargiNase had higher exopeptidase activity than trypsin. Utilizing these features of the paired mirror proteases, a workflow of trypsin and Ac-LysargiNase tandem digestion was developed for the identification of ubiquitinated proteins. Through this method, the charge states and ionization capacity of the unmodified peptides were efficiently reduced, and the identification of modified sites was consequently increased by 30% to 50%. Strikingly, approximately 15% of the modified sites were cleaved by Ac-LysargiNase, resulting in shorter K-ε-GG peptides for better identification. The enzyme Ac-LysargiNase is expected to serve as an option for increasing the efficiency of modified site identification in ubiquitome research.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.9b04340DOI Listing

Publication Analysis

Top Keywords

identification ubiquitinated
12
ubiquitinated sites
12
unmodified peptides
8
k-ε-gg peptides
8
modified sites
8
ac-lysarginase
7
identification
7
trypsin
6
ubiquitinated
5
sites
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!