Antimicrobial Peptides: Vestiges of Past or Modern Therapeutics?

Mini Rev Med Chem

Radiopharmaceuticals Division, Anushaktinagar, Mumbai- 400094, India.

Published: November 2020

The ubiquitous occurrence of Antimicrobial Peptides (AMPs) in all domains of life emphasizes their crucial role as ancient mediators of host defense. Despite their antiquity and prolonged history of exposure to pathogens, endogenous AMPs continue to serve as effective antibiotics. An "evolutionary arms race" between host and pathogen resulted in structural diversity of AMPs, leading these molecules to retain activity against a wide range of pathogens, including antibiotic-resistant microbes. As the menace of antibiotic resistance continues to render most antibiotics ineffective against pathogens, the search for novel drug candidates has taken the center stage. The ability of AMPs to combat antibiotic-resistant microbes gave rise to a remarkable surge of interest in AMPs as potential therapeutics. Apart from being effective antimicrobials, AMPs have also found application as probes suitable for in-situ diagnosis of infection. Here, we review the evolutionary history of AMPs, their structural diversity, and mechanism of interaction with microbial membranes. We also summarize the role of AMPs as modern pharmaceuticals and challenges to this development.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1389557519666191125121407DOI Listing

Publication Analysis

Top Keywords

antimicrobial peptides
8
amps
8
structural diversity
8
antibiotic-resistant microbes
8
peptides vestiges
4
vestiges modern
4
modern therapeutics?
4
therapeutics? ubiquitous
4
ubiquitous occurrence
4
occurrence antimicrobial
4

Similar Publications

Antimicrobial peptides (AMPs) are promising agents for treating antibiotic-resistant bacterial infections. Although discovering novel AMPs is crucial for combating multidrug-resistant bacteria and biofilm-related infections, their clinical potential relies on precise, real-time evaluation of efficacy, toxicity, and mechanisms. Optical diffraction tomography (ODT), a label-free imaging technology, enables real-time visualization of bacterial morphological changes, membrane damage, and biofilm formation over time.

View Article and Find Full Text PDF

deep-AMPpred: A Deep Learning Method for Identifying Antimicrobial Peptides and Their Functional Activities.

J Chem Inf Model

January 2025

School of Information and Artificial Intelligence, Anhui Provincial Engineering Research Center for Beidou Precision Agriculture Information, Key Laboratory of Agricultural Sensors for Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, Anhui 230036, China.

Antimicrobial peptides (AMPs) are small peptides that play an important role in disease defense. As the problem of pathogen resistance caused by the misuse of antibiotics intensifies, the identification of AMPs as alternatives to antibiotics has become a hot topic. Accurately identifying AMPs using computational methods has been a key issue in the field of bioinformatics in recent years.

View Article and Find Full Text PDF

A series of tripodal (three-arm) lysine-based peptides were designed and synthesized and their self-assembly properties in aqueous solution and antimicrobial activity were investigated. We compare the behaviors of homochiral tripodal peptides (KKY)K and a homologue containing the bulky aromatic fluorenylmethoxycarbonyl (Fmoc) group Fmoc-(KKY)K, and heterochiral analogues containing k (d-Lys), (kkY)K and Fmoc-(kkY)K. The molecular conformation and self-assembly in aqueous solutions were probed using various spectroscopic techniques, along with small-angle X-ray scattering (SAXS) and cryogenic-transmission electron microscopy (cryo-TEM).

View Article and Find Full Text PDF

Like other vertebrates, amphibians possess innate and adaptive immune systems. At the center of the adaptive immune system is the Major Histocompatibility Complex. The important molecules of innate immunity are antimicrobial peptides (AMPs).

View Article and Find Full Text PDF

Improving the antimicrobial potential of the peptide CIDEM-501 through acylation: A computational approach.

Biochim Biophys Acta Biomembr

January 2025

Biochemistry and Molecular Biology Department, Center for Pharmaceutical Research and Development, Ave. 26 # 1605, Nuevo Vedado, Ciudad de La Habana, 10400, Cuba. Electronic address:

Acylation is a common method used to modify antimicrobial peptides to enhance their effectiveness. It increases the interactions between the peptide and the bacterial cell membranes. However, acylation can also reduce the selectivity of the peptides by making them more active on eukaryotic membranes, which can lead to unintended toxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!