Targeted integration into a genomic safe harbor, such as the locus on chromosome 19, promises predictable transgene expression and reduces the risk of insertional mutagenesis in the host genome. The application of gamma-retroviral long terminal repeat (LTR)-driven vectors, which semirandomly integrate into the genome, has previously caused severe adverse events in some clinical studies due to transactivation of neighboring proto-oncogenes. Consequently, the site-specific integration of a therapeutic transgene into a genomic safe harbor locus would allow stable genetic correction with a reduced risk of insertional mutagenesis. However, recent studies revealed that transgene silencing, especially in case of weaker cell type-specific promoters, can occur in the locus of human pluripotent stem cells (PSCs) and can impede transgene expression during differentiation. In this study, we aimed to correct p47 deficiency, which is the second most common cause of chronic granulomatous disease, by insertion of a therapeutic p47 transgene into the locus of human induced PSCs (iPSCs) using CRISPR-Cas9. We analyzed transgene expression and functional correction from three different myeloid-specific promoters (miR223, CatG/cFes, and myeloid-related protein 8 [MRP8]). Upon myeloid differentiation of corrected iPSC clones, we observed that the miR223 and CatG/cFes promoters achieved therapeutically relevant levels of p47 expression and nicotinamide adenine dinucleotide phosphate oxidase activity, whereas the MRP8 promoter was less efficient. Analysis of the different promoters revealed high CpG methylation of the MRP8 promoter in differentiated cells, which correlated with the transgene expression data. In summary, we identified the miR223 and CatG/cFes promoters as cell type-specific promoters that allow stable transgene expression in the locus of iPSC-derived myeloid cells. Our findings further indicate that promoter silencing can occur in the safe harbor locus in differentiated hematopoietic cells and that a comparison of different promoters is necessary to achieve optimal transgene expression for therapeutic application of iPSC-derived cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7047106PMC
http://dx.doi.org/10.1089/hum.2019.194DOI Listing

Publication Analysis

Top Keywords

transgene expression
24
safe harbor
16
harbor locus
16
mir223 catg/cfes
12
transgene
9
transgene silencing
8
promoters
8
myeloid-specific promoters
8
pluripotent stem
8
myeloid cells
8

Similar Publications

Effect of transgene on salt tolerance of tobacco.

Transgenic Res

January 2025

Forest Department, College of Forestry, Hebei Agricultural University, Baoding, 071000, China.

To explore the effects of salt-tolerance gene accumulation on salt tolerance in transgenic plant, we used four types of plant expression vector (N27, N28, N29, and N30) carrying mtlD, mtlD + gutD, mtlD + gutD + BADH, mtlD + gutD + BADH + sacB genes respectively, to transform tobacco through Agrobacterium-mediated method. Transgenic lines were identified through polymerase chain reaction (PCR) detection. Transgenic lines and non-transgenic plant (CK) were subjected to 6‰ sodium chloride solution stress; then, fluorescence quantitative PCR (FQ-PCR) and salt tolerance indexes were used to assess characteristics.

View Article and Find Full Text PDF

Reducing endogenous CK levels accelerates fruit ripening in tomato by regulating ethylene biosynthesis and signalling pathway. Tomato is a typical climacteric fruit and is recognized as one of the most important horticultural crops globally. The ripening of tomato fruits is a complex process, highly regulated by phytohormones.

View Article and Find Full Text PDF

PagSND1-B1 Regulates Wood Formation by Influencing Phosphorus Absorption and Distribution in Poplar.

Plant Cell Environ

January 2025

State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China.

In natural environments, the growth and development of trees are continuously affected by phosphorus (P) starvation stress. However, the mechanisms through which trees balance stem growth and P distribution remain unknown. This study found that in the woody model species poplar, the P loss in stems is more severe than that in roots and leaves under P starvation conditions, thereby inhibiting stem development and reducing the expression of numerous genes related to wood formation, including PagSND1-B1.

View Article and Find Full Text PDF

The Evolution of Immunosuppressive Therapy in Pig-to-Nonhuman Primate Organ Transplantation.

Transpl Int

January 2025

Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.

An overview is provided of the evolution of strategies towards xenotransplantation during the past almost 40 years, focusing on advances in gene-editing of the organ-source pigs, pre-transplant treatment of the recipient, immunosuppressive protocols, and adjunctive therapy. Despite initial challenges, including hyperacute rejection resulting from natural (preformed) antibody binding and complement activation, significant progress has been made through gene editing of the organ-source pigs and refinement of immunosuppressive regimens. Major steps were the identification and deletion of expression of the three known glycan xenoantigens on pig vascular endothelial cells, the transgenic expression of human "protective" proteins, e.

View Article and Find Full Text PDF

Rice glycosyltransferase OsDUGT1 is involved in heat stress tolerance by glycosylating flavonoids and regulating flavonoid metabolism.

Front Plant Sci

January 2025

The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao, China.

One significant environmental element influencing the growth and yield of rice ( L.) is high temperature. Nevertheless, the mechanism by which rice responds to high temperature is not fully understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!