The placental syncytiotrophoblast is a giant multinucleated cell that forms a tree-like structure and regulates transport between mother and baby during development. It is maintained throughout pregnancy by continuous fusion of trophoblast cells, and disruptions in fusion are associated with considerable adverse health effects including diseases such as preeclampsia. Developing predictive control over cell fusion in culture models is hence of critical importance in placental drug discovery and transport studies, but this can currently be only partially achieved with biochemical factors. Here, we investigate whether biophysical signals associated with budding morphogenesis during development of the placental villous tree can synergistically direct and enhance trophoblast fusion. We use micropatterning techniques to manipulate physical stresses in engineered microtissues and demonstrate that biomimetic geometries simulating budding robustly enhance fusion and alter spatial patterns of synthesis of pregnancy-related hormones. These findings indicate that biophysical signals play a previously unrecognized and significant role in regulating placental fusion and function, in synergy with established soluble signals. More broadly, our studies demonstrate that biomimetic strategies focusing on tissue mechanics can be important approaches to design, build, and test placental tissue cultures for future studies of pregnancy-related drug safety, efficacy, and discovery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.9b19906 | DOI Listing |
Heart Rhythm
December 2024
School of Biomedical Engineering and Imaging Sciences, King's College London, UK.
Background: Electrocardiographic imaging (ECGi) is a non-invasive technique for ventricular tachycardia (VT) ablation planning. However, it is limited to reconstructing epicardial surface activation. In-silico pace mapping combines a personalized computational model with clinical electrocardiograms (ECGs) to generate a virtual 3D pace map.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
November 2024
Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui, China.
Background: Gallstone formation is a common digestive ailment, with unclear mechanisms underlying its development. Dysfunction of the gallbladder smooth muscle (GSM) may play a crucial role, particularly with a high-fat diet (HFD). This study aimed to investigate the effects of an HFD on GSM and assess how it alters contractility through changes in the extracellular matrix (ECM).
View Article and Find Full Text PDFJACS Au
December 2024
Department of Chemistry, University of Antwerp, Antwerp 2020, Belgium.
Proton-coupled electron transfer (PCET) is a fundamental redox process and has clear advantages in selectively activating challenging C-H bonds in many biological processes. Intrigued by this activation process, we aimed to develop a facile PCET process in cancer cells by modulating proton tunneling. This approach should lead to the design of an alternative photodynamic therapy (PDT) that depletes the mitochondrial electron transport chain (ETC), the key redox regulator in cancer cells under hypoxia.
View Article and Find Full Text PDFBio Protoc
December 2024
Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India.
Cyclic diadenosine monophosphate (c-di-AMP) is a recently discovered second messenger that modulates several signal transduction pathways in bacterial and host cells. Besides the bacterial system, c-di-AMP signaling is also connected with the host cytoplasmic surveillance pathways (CSP) that induce type-I IFN responses through STING-mediated pathways. Additionally, c-di-AMP demonstrates potent adjuvant properties, particularly when administered alongside the Bacillus Calmette-Guérin (BCG) vaccine through mucosal routes.
View Article and Find Full Text PDFBiomed Tech (Berl)
December 2024
Institute for Artificial Intelligence in Medicine (IKIM), University Hospital Essen (AöR), Essen, Germany.
Objectives: The shape is commonly used to describe the objects. State-of-the-art algorithms in medical imaging are predominantly diverging from computer vision, where voxel grids, meshes, point clouds, and implicit surface models are used. This is seen from the growing popularity of ShapeNet (51,300 models) and Princeton ModelNet (127,915 models).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!