Objective: To investigate the effects of long non-coding ribonucleic acid (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) on myocardial ischemia/reperfusion (I/R) injury in rats and its mechanism, and to provide a certain reference for the clinical prevention and treatment of myocardial infarction.
Materials And Methods: A total of 60 male Sprague-Dawley rats were divided into 3 groups using a random number table, including the Sham group (n=20), I/R group (n=20) and I/R + MALAT1 small interfering RNA (siRNA) group (n=20). An I/R model was established by means of recanalization after ligation of the left anterior descending coronary artery of the rats. The rats in the I/R + MALAT1 siRNA group were used to establish a model of MALAT1 knockdown by injecting MALAT1 siRNA from the tail vein. The myocardial infarction area in each group was detected via 2,3,5-triphenyl tetrazolium chloride (TTC) staining. The ejection fraction% (EF%) and fractional shortening% (FS%) of the heart in each group were measured through echocardiography. Hematoxylin and eosin (H&E) staining was adopted to determine the morphological changes in myocardial cells in each group. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining was performed to detect the apoptosis levels of myocardial cells and fibroblasts in the cardiac tissues in each group, and Western blotting assay was conducted to measure the expression levels of apoptosis-related proteins [B-cell lymphoma-2 (Bcl-2) and Bcl-2-associated X protein (Bax)]. In addition, the content of β-catenin in the three groups of rats was determined via immunohistochemical staining. Finally, the impacts of MALAT1 siRNA on the expression level of β-catenin protein were detected using Western blotting assay.
Results: MALAT1 siRNA could prominently ameliorate the I/R-induced cardiac insufficiency in the rats and improve the EF% and FS% of the heart (p<0.05). Moreover, MALAT1 siRNA was able to remarkably inhibit the I/R injury-induced myocardial infarction, reducing the infarction area from (59.54±3.45) to (24.85±1.30; p<0.05). The results of the H&E staining indicated that compared with those in the I/R group, the myofilaments of the myocardial cells were well-arranged, the degrees of degradation and necrosis of the myofilaments declined, and the cellular edema was relieved markedly in the I/R + MALAT1 siRNA group. It was shown in the results of immunohistochemistry and Western blotting that MALAT1 siRNA could notably reverse the I/R-induced up-regulation of β-catenin expression (p<0.05).
Conclusions: MALAT1 knockdown can significantly ameliorate the I/R-induced myocardial injury and improve the cardiac function of the rats, whose mechanism is probably correlated with the inhibition of MALAT1 siRNA on β-catenin. Therefore, MALAT1 siRNA is expected to become a new target for the treatment of myocardial infarction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.26355/eurrev_201911_19450 | DOI Listing |
Curr Oncol Rep
January 2025
Department of Molecular Oncology, Cancer Institute (WIA), Chennai, TN, India.
Purpose Of The Review: This review aims to explore the pivotal role of long non-coding RNAs (lncRNAs) as epigenetic regulators in the pathogenesis of multiple myeloma (MM). Additionally, we have portrayed the dual role of lncRNAs in the epigenetic landscape of MM pathobiology.
Recent Findings: In MM, lncRNAs are pivotal for proliferation, progression, and drug resistance by acting as miRNA sponges, regulating mRNA activity through microRNA recognition elements (MREs).
Cells
November 2024
Division of Cardiology, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 11101, Taiwan.
Background: Atrial fibrillation (AF) is a common cardiac arrhythmia associated with significant morbidity and mortality. Rapid electrical stimulation (RES) of atrial fibroblasts plays a crucial role in AF pathogenesis, but the underlying molecular mechanisms remain unclear. This study investigates the regulatory axis involving MALAT1, miR-499a-5p, and SOX6 in human cardiac fibroblasts from adult atria (HCF-aa) under RES conditions.
View Article and Find Full Text PDFGene
February 2025
Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India. Electronic address:
Long non-coding RNAs (lncRNAs) are long RNA transcripts with length >200 nucleotides that do not encode proteins. They play a crucial role in regulating HIV-1 infection, yet their involvement in myeloid cells remains underexplored. Myeloid cells are susceptible to HIV infection and contribute substantially to the latent HIV reservoir.
View Article and Find Full Text PDFParasit Vectors
July 2024
Department of Parasitology, School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China.
Background: The primary pathogenic mechanism of schistosomiasis-associated liver fibrosis involves the deposition of schistosome eggs, leading to the formation of liver egg granulomas and subsequent liver fibrosis. Hepatic stellate cells are abnormally activated, resulting in excessive collagen deposition and fibrosis development. While specific long non-coding RNAs (lncRNAs) have been associated with fibrotic processes, their roles in schistosomiasis-associated liver fibrosis remain unclear.
View Article and Find Full Text PDFJ Chin Med Assoc
June 2024
Department of Emergency Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan, ROC.
Background: Metastasis-associated lung adenocarcinoma transcript 1 ( MALAT1 ) plays a critical role in the pathophysiology of diabetes-related complications. However, whether macrophage-derived MALAT1 affects autophagic activity under hyperglycemic conditions is unclear. Therefore, we investigated the molecular regulatory mechanisms of macrophage-derived MALAT1 and autophagy under hyperglycemic conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!