Reduction of cobalamin by non-dedicated cellular reductases has been reported in earlier work, however, the sources of reducing power and the mechanisms are unknown. This study reports results of kinetic and mechanistic investigation of the reaction between aquacobalamin, HOCbl, and reduced β-nicotinamide adenine dinucleotide, NADH. This interaction leads to the formation of one-electron reduced cobalamin, cob(II)alamin, and proceeds via water substitution on aquacobalamin by NADH and further decomposition of NADH-Co(III) complex to cob(II)alamin and NADH. Riboflavin catalyzes the reduction of aquacobalamin by NADH both in free form and with aquacobalamin bound to the cobalamin processing enzyme CblC. The rate-determining step of this catalytic reaction is the interaction between riboflavin and NADH to produce a charge transfer complex that reacts with aquacobalamin. Aquacobalamin quenches the fluorescence of NADH and riboflavin predominantly via a static mechanism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00775-019-01745-3 | DOI Listing |
J Biol Inorg Chem
February 2020
Department of Food Chemistry, Ivanovo State University of Chemistry and Technology, Sheremetevskiy Str. 7, 153000, Ivanovo, Russian Federation.
Reduction of cobalamin by non-dedicated cellular reductases has been reported in earlier work, however, the sources of reducing power and the mechanisms are unknown. This study reports results of kinetic and mechanistic investigation of the reaction between aquacobalamin, HOCbl, and reduced β-nicotinamide adenine dinucleotide, NADH. This interaction leads to the formation of one-electron reduced cobalamin, cob(II)alamin, and proceeds via water substitution on aquacobalamin by NADH and further decomposition of NADH-Co(III) complex to cob(II)alamin and NADH.
View Article and Find Full Text PDFJ Biol Inorg Chem
October 2012
Department of Chemistry, University of Louisville, Louisville, KY 40292, USA.
A detailed computational analysis employing density functional theory (DFT), atoms in molecules, and quantum mechanics/molecular mechanics (QM/MM) tools has been performed to investigate the primary coordination environment of cob(I)alamin (Co(+)Cbx), which is a ubiquitous B(12) intermediate in methyltransferases and ATP:corrinoid adenosyltransferases. The DFT calculations suggest that the simplified (Co(+)Cbl) as well as the complete (Co(+)Cbi) complexes can adapt to the square pyramidal or octahedral coordination geometry owing to the unconventional H-bonding between the Co(+) ion and its axial ligands. These Co(+)-H bonds contain appreciable amounts of electrostatic, charge transfer, long-range correlation, and dispersion components.
View Article and Find Full Text PDFPLoS One
November 2010
Centre for Molecular Processing, School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom.
PduS is a corrin reductase and is required for the reactivation of the cobalamin-dependent diol dehydratase. It is one component encoded within the large propanediol utilisation (pdu) operon, which is responsible for the catabolism of 1,2-propanediol within a self-assembled proteinaceous bacterial microcompartment. The enzyme is responsible for the reactivation of the cobalamin coenzyme required by the diol dehydratase.
View Article and Find Full Text PDFMicrobiology (Reading)
April 2005
Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA.
Salmonella enterica degrades 1,2-propanediol (1,2-PD) by a pathway that requires coenzyme B(12) (adenosylcobalamin; AdoCbl). The genes specifically involved in 1,2-PD utilization (pdu) are found in a large contiguous cluster, the pdu locus. Earlier studies have indicated that this locus includes genes for the conversion of vitamin B(12) (cyanocobalamin; CNCbl) to AdoCbl and that the pduO gene encodes an ATP : cob(I)alamin adenosyltransferase which catalyses the terminal step of this process.
View Article and Find Full Text PDFJ Bacteriol
August 2000
Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706-1567, USA.
Reduction of the cobalt ion of cobalamin from the Co(III) to the Co(I) oxidation state is essential for the synthesis of adenosylcobalamin, the coenzymic form of this cofactor. A cob(II)alamin reductase activity in Salmonella enterica serovar Typhimurium LT2 was isolated to homogeneity. N-terminal analysis of the homogeneous protein identified NAD(P)H:flavin oxidoreductase (Fre) (EC 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!