Nanofibers of a copper(ii)-based coordination polymer [Cu(HBTC)(HO)] were synthesized via a microwave-assisted hydrothermal process, while macroparticles and bulk crystals were prepared via a hydrothermal method. X-ray analysis revealed that this compound possesses one-dimensional zig-zag chains, in which the coordination polyhedron of the copper(ii) center is a five-coordinate distorted square-pyramid. The width of the as-prepared nanofibers was about 150 nm, while the size of the macroparticles was about 200 μm. The antibacterial activities of the nanofibers and macroparticles against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were evaluated by determining the minimal inhibitory concentration (MIC), the growth curve of the bacteria and the bacterial reduction assay. The nanofibers showed higher antibacterial performance as compared with macroparticles, commercial copper nanoparticles, and pure ligands alone. The bacteriostatic rates of nanofibers and macroparticles were up to 99.9% and 96.7% against E. coli, while 99.1% and 96.2% against S. aureus, respectively, when the concentration was 250 μg mL. The synergistic antibacterial mechanism was also proposed based on the generation of reactive oxygen species (ROS) and the release of Cu ions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9dt03649k | DOI Listing |
JAMA
January 2025
Assistant Secretary for Technology Policy/Office of the National Coordinator for Health IT, Washington, DC.
Importance: Health information technology, such as electronic health records (EHRs), has been widely adopted, yet accessing and exchanging data in the fragmented US health care system remains challenging. To unlock the potential of EHR data to improve patient health, public health, and health care, it is essential to streamline the exchange of health data. As leaders across the US Department of Health and Human Services (DHHS), we describe how DHHS has implemented fundamental building blocks to achieve this vision.
View Article and Find Full Text PDFDiabetologia
January 2025
Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
The incidence of type 2 diabetes has risen globally, in parallel with the obesity epidemic and environments promoting a sedentary lifestyle and low-quality diet. There has been scrutiny of ultra-processed foods (UPFs) as a driver of type 2 diabetes, underscored by their increasing availability and intake worldwide, across countries of all incomes. This narrative review addresses the accumulated evidence from investigations of the trends in UPF consumption and the relationship with type 2 diabetes incidence.
View Article and Find Full Text PDFExp Brain Res
January 2025
Department of Kinesiology, Michigan State University, 308 W Circle Dr, East Lansing, USA.
A characteristic feature of redundancy in the motor system is the ability to compensate for the failure of individual motor elements without affecting task performance. In this study, we examined the pattern and variability in error compensation between motor elements during a virtual task. Participants performed a redundant cursor control task with finger movements.
View Article and Find Full Text PDFIntroduction: Health Professions Scholarship Program (HPSP) medical students typically enter the military with minimal military experience, commissioning specifically for the scholarship. During medical school, the only required training is a 5- to 6-week officer training course, which is neither specific to medicine nor guaranteed to be at the beginning of school, since it can be taken at any time. This lack of prior experience can lead to decreased confidence and understanding of the HPSP, specifically the medical school timeline leading up to the military match process and overall military.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan.
This study presents a novel nanostructured material formed by inserting oxidized carbon nanohorns (CNHox) between layered graphene oxide (GO) nanosheets using metal ions (M) from nitrate as intermediates. The resulting GO-CNHox-M structure effectively mitigated interlayer aggregation of the GO nanosheets. This insertion strategy promoted the formation of nanowindows on the surface of the GO sheets and larger mesopores between the GO nanosheets, improving material porosity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!