Background: Catalytic defect Cas9-cytosine deaminase fusion is widely used in base editing. The Multiple copy numbers of the MS2 binding site (MBS) can recruit multiple MS2 coat proteins (MCPs), which are usually applied to amplify signals. Our study aimed to apply the MS2 signal amplification system to the base editing system in order to achieve simultaneous mutations of multiple bases at the target genome site.

Methods: Multiple copy numbers of the MS2 were ligated to the 3'-end of sgRNA, and MCP was fused to the 5'-end of cytosine deaminases. The MS2 was recognized by MCP to recruit cytosine deaminase for base substitutions (C-T) at the target site. Different Cas9 variants, different cytosine deaminases and different copy numbers of MS2 were tested in this system, and the different versions of base editors were compared by editing efficiency and window.

Results: In this study, dCas9, nCas9 (D10A) and nCas9 (H840A) were used. Among these 3 Cas9 variants, dCas9 exhibited higher base mutation efficiency. Two cytosine deaminases were then applied and the efficiency of rAPOBEC1 deaminase was found to be higher than AID. We also increased the copy numbers of MS2 linked to sgRNA from 2 to 12. Disappointingly, the sgRNA-12x MS2 did not improve the editing efficiency or increase the editing window.

Conclusion: An optimal version of base editor based on the MS2 system, MS2-BE-rAPOBEC1 (sgRNA-2x MS2, MCP-rAPOBEC1 and dCas9), was obtained. This tool can simultaneously mutate multiple bases at the target site, providing a new approach for the study of genome functions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6762045PMC
http://dx.doi.org/10.1002/ame2.12080DOI Listing

Publication Analysis

Top Keywords

copy numbers
16
numbers ms2
16
cytosine deaminases
12
ms2
11
base editor
8
editor based
8
based ms2
8
ms2 system
8
base editing
8
multiple copy
8

Similar Publications

Interleukin 6 (IL6) is an inflammatory biomarker linked to central and peripheral nervous system diseases. This study combined bioinformatics and statistical meta-analysis to explore potential associations between IL6 gene variants (rs1800795, rs1800796, and rs1800797) and neurological disorders (NDs) and brain cancer. The meta-analysis was conducted on substantial case-control datasets and revealed a significant correlation between IL6 SNPs (rs1800795 and rs1800796) with overall NDs (p-value < 0.

View Article and Find Full Text PDF

Glutamate-rich WD40 repeat containing 1 (GRWD1) is a novel oncogene/oncoprotein that downregulates the p53 tumor suppressor protein through several mechanisms. One important mechanism involves binding of GRWD1 to RPL11, which competitively inhibits the RPL11-MDM2 interaction and releases RPL11-mediated suppression of MDM2 ubiquitin ligase activity toward p53. Here, we mined the TCGA (The Cancer Genome Atlas) database to gain in-depth insight into the clinical relevance of GRWD1.

View Article and Find Full Text PDF

Background: Cancer immunotherapy has transformed metastatic cancer treatment, yet challenges persist regarding therapeutic efficacy. RECQL4, a RecQ-like helicase, plays a central role in DNA replication and repair as part of the DNA damage response, a pathway implicated in enhancing efficacy of immune checkpoint inhibitor (ICI) therapies. However, its role in patient response to ICI remains unclear.

View Article and Find Full Text PDF

Context: Duplications occurring upstream of the SOX9 gene have been identified in a limited subset of patients with 46,XX testicular/ovotesticular differences/disorders of sex development (DSD). However, comprehensive understanding regarding their clinical presentation and diagnosis is limited.

Objective: To gain further insight into the diagnosis of a large cohort of 46,XX individuals with duplications upstream of SOX9.

View Article and Find Full Text PDF

Background And Objectives: Neonatal encephalopathy (NE) is characterized by an abnormal level of consciousness with or without seizures in the neonatal period. It affects 1-6/1,000 live term newborns. We applied genome sequencing (GS) in term newborns with NE to investigate the underlying genetic causes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!