Palladium/norbornene (Pd/NBE) cooperative catalysis, also known as the Catellani reaction, has become an increasingly useful method for site-selective arene functionalization; however, certain constraints still exist due to its intrinsic mechanistic pathway. Herein we report a redox-neutral functionalization of aryl boroxines via Pd/NBE catalysis. An electrophile, such as carboxylic acid anhydrides or -benzoyl hydroxylamines, is coupled at the boroxine position, and a proton as the second electrophile is introduced at the position. This reaction does not require extra oxidants or reductants, and avoids stoichiometric bases or acids, thereby tolerating a wide range of functional groups. In particular, orthogonal chemoselectivity between aryl iodide and boroxine moieties is demonstrated, which could be used to control reaction sequences. Finally, a deuterium labelling study supports the -protonation pathway. This unique mechanistic feature could inspire the development of a new class of Pd/NBE-catalyzed transformations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6879102 | PMC |
http://dx.doi.org/10.1016/j.chempr.2019.02.005 | DOI Listing |
J Org Chem
January 2025
Faculty of Science, Kunming University of Science and Technology, Jingming South Road 727, Chenggong District, Kunming 650500, P. R. China.
A novel silver-catalyzed cascade radical isonitrile insertion and defluorinative cyclization have been developed to synthesize CFH- and phosphinoyl-containing quinolines from -isocyanyl α-trifluoromethylstyrenes. The reaction proceeded under redox-neutral conditions and allowed the construction of a highly attractive quinoline ring system, with the simultaneous formation of the CFH group and introduction of various phosphinoyl groups in a single transformation, showing operational simplicity, a wide substrate scope, good tolerance for functional groups, and remarkable atom-/stepeconomy. Mechanistic studies indicated that the reaction is likely to involve the participation of P-centered radicals and key carbanion intermediates.
View Article and Find Full Text PDFOrg Lett
January 2025
School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, Kerala, India.
Herein, we report a formal C-C bond azidation and cyanation of unactivated aliphatic ketones using commercially available tosyl azide and cyanide, respectively. A visible-light-mediated organophotocatalyst enables radical azidation and cyanation of ketone-derived pro-aromatic dihydroquinazolinones (under mostly redox-neutral conditions) as supported by preliminary mechanistic studies. These metal-free and scalable protocols can be used to synthesize tertiary, secondary, and primary alkyl azides and nitriles with good functional group tolerance and postsynthetic diversification of the azide group, including bioconjugation.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Department of Chemistry, CMS College Kottayam (Autonomous), Kottayam, Kerala, 686001, India.
The Suzuki-Miyaura Coupling (SMC) reaction is a powerful method for forming carbon-carbon bonds in organic synthesis. Recent advancements in SMC reactions have introduced first-row transition metal catalysts, with zinc garnering significant interest due to its cost-effective and eco-friendly nature. Despite progress in experimental protocols, the mechanistic details of zinc-catalyzed SMC reactions are limited.
View Article and Find Full Text PDFChemistry
January 2025
Department of Chemistry, Indian Institute of Technology Kharagpur Kharagpur 721302, West Bengal, India.
All-carbon quaternary and tertiary stereocenters connected at the C2-position of functionalizable C3-alkylated indole nucleus are commonly occurring frameworks found in many indole alkaloids of medicinal importance. Their direct access is scarcely reported, a long-standing problem, and developing a unique yet simple method can pave the pathway to an entirely different retrosynthetic route for the total synthesis of these alkaloids. Herein, this problem is addressed by developing an unprecedented branch-selective allylation strategy employing a broad range of structurally and electronically different 3-alkenyl-indoles and allylboronic acids.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, University of California, Berkeley, California 94720, United States.
Dioxygen (O) is a potent oxidant used by aerobic organisms for energy transduction and critical biosynthetic processes. Numerous metalloenzymes harness O to mediate C-H bond hydroxylation reactions, but most commonly feature iron or copper ions in their active site cofactors. In contrast, many manganese-activated enzymes─such as glutamine synthetase and isocitrate lyase─perform redox neutral chemical transformations and very few are known to activate O or C-H bonds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!