Dexmedetomidine (DEX) is widely used in perioperative settings for analgesia and sedation; however, little is known about its effects on the hypoxia-induced progression of tumor cells. In the present study, the effects of DEX on hypoxia-induced growth and metastasis of lung cancer cells and colorectal cancer cells was examined. A549 cells and HCT116 cells were treated with normoxia, hypoxia, co-treatment of hypoxia and DEX, and atipamezole (an α adrenoceptor antagonist) for 4 h. The proliferation rate of cells was determined by MTT assays. Cell metastatic potential was evaluated by Transwell assays. Survivin and hypoxia inducible factor (HIF)-1α were detected by western blotting. Matrix metalloproteinase (MMP)-2 and MMP-9 were measured using reverse transcription-quantitative PCR. It was demonstrated that hypoxia treatment promoted the proliferation and may promote the metastasis of the two cancer cell lines. DEX substantially contributed to the survival and aggressiveness of the two cancer cell lines following hypoxia. Furthermore, DEX upregulated the expression of survivin, MMP-2, MMP-9 and HIF-1α in the two cancer cell lines in response to hypoxia. Finally, the effects of DEX on the hypoxia-induced growth and metastatic potential of cancer cells were reversed by atipamezole. Collectively, DEX enhances the hypoxia-induced progression of lung cancer cells and colorectal cancer cells by regulating HIF-1α signaling, which may be associated with the α adrenoceptor pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6861874 | PMC |
http://dx.doi.org/10.3892/etm.2019.8136 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Center for Complexity and Biosystems, Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy.
Collective migration of cancer cells is often interpreted using concepts derived from the physics of active matter, but the experimental evidence is mostly restricted to observations made in vitro. Here, we study collective invasion of metastatic cancer cells injected into the mouse deep dermis using intravital multiphoton microscopy combined with a skin window technique and three-dimensional quantitative image analysis. We observe a multicellular but low-cohesive migration mode characterized by rotational patterns which self-organize into antiparallel persistent tracks with orientational nematic order.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
Malignant gliomas are heterogeneous tumors, mostly incurable, arising in the central nervous system (CNS) driven by genetic, epigenetic, and metabolic aberrations. Mutations in isocitrate dehydrogenase (IDH1/2) enzymes are predominantly found in low-grade gliomas and secondary high-grade gliomas, with IDH1 mutations being more prevalent. Mutant-IDH1/2 confers a gain-of-function activity that favors the conversion of a-ketoglutarate (α-KG) to the oncometabolite 2-hydroxyglutarate (2-HG), resulting in an aberrant hypermethylation phenotype.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Oncode Institute, Hubrecht Institute-Royal Netherlands Academy of Arts and Science, Utrecht 3584 CT, The Netherlands.
Matrigel/BME, a basement membrane-like preparation, supports long-term growth of epithelial 3D organoids from adult stem cells [T. Sato , , 262-265 (2009); T. Sato , , 1762-1772 (2011)].
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Innovative Genomics Institute, University of California, Berkeley, CA 94720.
The widespread application of genome editing to treat and cure disease requires the delivery of genome editors into the nucleus of target cells. Enveloped delivery vehicles (EDVs) are engineered virally derived particles capable of packaging and delivering CRISPR-Cas9 ribonucleoproteins (RNPs). However, the presence of lentiviral genome encapsulation and replication proteins in EDVs has obscured the underlying delivery mechanism and precluded particle optimization.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Laboratory of Precision Medicine and Biopharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
Recurrent missense mutations in the human epidermal growth factor receptor 2 (HER2) have been identified across various human cancers. Among these mutations, the active S310F mutation in the HER2 extracellular domain stands out as not only oncogenic but also confers resistance to pertuzumab, an antibody drug widely used in clinical cancer therapy, by impeding its binding. In this study, we have successfully employed computational-aided rational design to undertake directed evolution of pertuzumab, resulting in the creation of an evolved pertuzumab variant named Ptz-SA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!