In this paper, we have performed determination of the concentration of twenty elements in seven human organs (spleen, liver, kidney, muscle, heart, lungs, and brain) using two-jet plasma atomic emission spectrometry. The method allows multielemental analysis of solid samples without wet acid digestion. Before analysis, all human organs were first dried, ground to powders, and carbonized. The relative content of elements in each of the seven organs was very different depending on the donor. The average content of twenty elements in various organs varied in the following ranges (g/g of dry weight): Ag (<0.02-0.2), Al (2.1-263), B (<0.5-2.5), Ca (323-1650), Cd (<0.1-114), Co (<0.2-1.0), Cr (<0.5-4.0), Cu (4.2-47), Fe (156-2900), Mg (603-1305), Mn (0.47-8.5), Mo (<0.2-4.9), Ni (<0.3-3.1), Pb (<0.3-1.9), Si (31.6-2390), Sn (<0.3-3.2), Sr (0.2-1.0), Ti (<2-31, mainly in lungs), and Zn (120-292). The concentration range of Ba in organs of five donors was <0.2-6.9 and 2.0-5600 for one donor with pneumoconiosis (baritosis). The maximum element contents were found, respectively, in the following organs: Al, B, Cr, Ni, Si, Sn, Sr, Ti (lungs), Fe (lungs and spleen), Mn (liver and kidney), Ag and Mo (liver), Ca (lungs and kidney), Cu (brain), Cd (kidney), Pb (brain), and Zn (liver, kidney, and muscle). The minimal content of elements was observed, respectively, in the following organs: Ag (all organs except liver), Ba (spleen, muscles, and brain), Ca and Mg (liver), Si (liver, muscle, and brain), Cd and Sr (heart and brain), Al, Cu, Fe, and Mn (muscle), and Zn (spleen and brain). The analysis of possible biological role and reasons for the increased content of some elements in the organs analyzed was carried out.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6854933 | PMC |
http://dx.doi.org/10.1155/2019/9782635 | DOI Listing |
Immunology
January 2025
Anatomy, Dokkyo Medical University, Mibu, Tochigi, Japan.
Dendritic cells (DCs), the primary antigen-presenting cells, have traditionally been identified by CD103 molecules in rats, whereas mouse and human DCs are identified by CD11c molecules. However, this history does not preclude the existence of CD103 DCs in rats. To explore this possibility, we examined MHCII cells in rat spleen and thymus, identifying a novel population of CD103MHCIICD45RCD172a cells.
View Article and Find Full Text PDFGeriatr Gerontol Int
January 2025
Department of Advanced Senotherapeutics and Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.
In this review, we review the current status of biomarkers for aging and possible perspectives on anti-aging or rejuvenation from the standpoint of biomarkers. Aging is observed in all cells and organs, and we focused on research into senescence in the skin, musculoskeletal system, immune system, and cardiovascular system. Commonly used biomarkers include SA-βgal, cell-cycle markers, senescence-associated secretory phenotype (SASP) factors, damage-associated molecular patterns (DAMPs), and DNA-damage-related markers.
View Article and Find Full Text PDFEur J Med Res
January 2025
Department of General, Visceral and Thoracic Surgery, German Armed Forces Central Hospital, Koblenz, Germany.
Liquid biomarkers are essential in trauma cases and critical care and offer valuable insights into the extent of injury, prognostic predictions, and treatment guidance. They can help assess the severity of organ damage (OD), assist in treatment decisions and forecast patient outcomes. Notably, small extracellular vesicles, particularly those involved in splenic trauma, have been overlooked.
View Article and Find Full Text PDFContext: Anemia is a medical condition resulting from a reduction in the number of red blood cells below the reference range. It is a major public health problem, particularly among adolescents, as it can have negative effects on cognitive performance, growth and reproduction. This study aims to assess the determinants of anemia among adolescents in schools in the city of Douala.
View Article and Find Full Text PDFNeurol Ther
January 2025
Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.
Hereditary transthyretin amyloidosis (ATTRv, v for variant) is a genetic disorder characterized by the deposition of misfolded transthyretin (TTR) protein in tissues, resulting in progressive dysfunction of multiple organs, including the nervous system, heart, kidneys, and gastrointestinal (GI) tract. Noninvasive serum biomarkers have become key tools for diagnosing and monitoring ATTRv. This review examines the role of available biomarkers for neurological, cardiac, renal, gastrointestinal, and multisystemic involvement in ATTRv.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!