While the dose deposition of charged hadrons has received much attention over the last decades starting in 1930 with the publication of the Bethe equation, there are still practical obstacles in implementing it in fields like radiotherapy and isotope production on cyclotrons. This is especially true if the target material consists of non-homogeneous materials, either consisting of a mixture of different elements or experiencing phase changes during irradiation. While Monte-Carlo methods have had great success in describing these more difficult target materials, they come at a computational cost, especially if the problem is time-dependent. This can greatly hinder optimal advancement in therapy and isotope targetry. Here, a regular perturbation method is used to solve the Bethe equation in the limit of small relativistic effects. Particular focus is given to incident energy level relevant to radionuclide production and radiotherapy applications, i.e. 10-200 MeV. We present a series solution for the range and dose distribution in terms of elementary functions, as opposed to special functions which will aid in uptake by practitioners.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6879469PMC
http://dx.doi.org/10.1038/s41598-019-54103-3DOI Listing

Publication Analysis

Top Keywords

bethe equation
12
radionuclide production
8
practical solution
4
solution bethe
4
equation energy
4
energy range
4
range applicable
4
applicable radiotherapy
4
radiotherapy radionuclide
4
production dose
4

Similar Publications

Excited state properties from the Bethe-Salpeter equation: State-to-state transitions and spin-orbit coupling.

J Chem Phys

December 2024

Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany.

The formalism to calculate excited state properties from the GW-Bethe-Salpeter equation (BSE) method is introduced, providing convenient access to excited state absorption, excited state circular dichroism, and excited state optical rotation in the framework of the GW-BSE method. This is achieved using the second-order transition density, which can be obtained by solving a set of auxiliary equations similar to time-dependent density functional theory (TD-DFT). The proposed formulation therefore leads to no increase in the formal computational complexity when compared to the corresponding ground state properties.

View Article and Find Full Text PDF

With the ever-increasing volume of data, the need for systems that can handle massive datasets is becoming gradually critical. High performance visible light communication (VLC) systems offer an expedient solution, yet its widespread adoption is hindered by the limited modulation bandwidth of light emitting diodes (LEDs). Through many-body perturbation theory within the approximation and the Bethe-Salpeter equation (BSE) approach, this work introduces a novel approach to achieving exceptionally high modulation bandwidth by utilizing the nearly flat bands in two-dimensional semiconductors, using SnNBr monolayer as a prototype material for overcoming this bottleneck.

View Article and Find Full Text PDF

Why Does the Approximation Give Accurate Quasiparticle Energies? The Cancellation of Vertex Corrections Quantified.

J Phys Chem Lett

December 2024

Université Paris-Saclay, CEA, Service de recherche en Corrosion et Comportement des Matériaux, SRMP, 91191 Gif-sur-Yvette, France.

Hedin's approximation to the electronic self-energy has been impressively successful in calculating quasiparticle energies, such as ionization potentials, electron affinities, or electronic band structures. The success of this fairly simple approximation has been ascribed to the cancellation of the so-called vertex corrections that go beyond the approximation. This claim is mostly based on past calculations using vertex corrections within the crude local-density approximation.

View Article and Find Full Text PDF

GPU-Accelerated Solution of the Bethe-Salpeter Equation for Large and Heterogeneous Systems.

J Chem Theory Comput

December 2024

Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States.

We present a massively parallel GPU-accelerated implementation of the Bethe-Salpeter equation (BSE) for the calculation of the vertical excitation energies (VEEs) and optical absorption spectra of condensed and molecular systems, starting from single-particle eigenvalues and eigenvectors obtained with density functional theory. The algorithms adopted here circumvent the slowly converging sums over empty and occupied states and the inversion of large dielectric matrices through a density matrix perturbation theory approach and a low-rank decomposition of the screened Coulomb interaction, respectively. Further computational savings are achieved by exploiting the nearsightedness of the density matrix of semiconductors and insulators to reduce the number of screened Coulomb integrals.

View Article and Find Full Text PDF

GW and Bethe-Salpeter equation (BSE) methods are used to calculate energies of excited states of organic molecules in the Quest-3 database [Loos et al., J. Chem.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!