Incineration bottom ash (IBA) faces challenges for its sustainable recycling due to the absence of scenario-specific risk assessment. Environmental risk assessment was carried out via a case study incorporating key factors to dominate human exposures during IBA utilization in land reclamation. Three research components echoing respective IBA leaching, exposures, and consequences were performed under a supportive framework to elaborate these interlinked key factors and unveil the potential environmental risks. IBA leachability was firstly investigated using various laboratory standard leaching methods while conducted a large-scale field trial experiment for mutual confirmation, suggesting that maximum leached amounts may be achieved when liquid to solid (L/S) ratio increases to 10. Dilution and transportation models were both developed to discriminate the mitigation of IBA leachate between two periods i.e. during and after land reclamation, suggesting that dilution rather than transportation may dominate the environmental impact for metal exposures. Metal bioaccumulation from a typical mollusk species was performed coupling the calculated dietary safety limits based on Singaporean diet intake for development of the threshold of toxicology concerns on human exposures. With such, IBA benign usage in land reclamation was also conferred in the form of distance and dilution factor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2019.121600 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!