Divergent evolutionary morphology of the axial skeleton as a potential key innovation in modern cetaceans.

Proc Biol Sci

Laboratory of Functional and Evolutionary Morphology, University of Liège, Liège, Belgium.

Published: December 2019

Cetaceans represent the most diverse clade of extant marine tetrapods. Although the restructuring of oceans could have contributed to their diversity, other factors might also be involved. Similar to ichthyosaurs and sharks, variation of morphological traits could have promoted the colonization of new ecological niches and supported their diversification. By combining morphological data describing the axial skeleton of 73 cetacean species with phylogenetic comparative methods, we demonstrate that the vertebral morphology of cetaceans is associated with their habitat. All riverine and coastal species possess a small body size, lengthened vertebrae and a low vertebral count compared with open ocean species. Extant cetaceans have followed two distinct evolutionary pathways relative to their ecology. Whereas most offshore species such as baleen whales evolved towards an increased body size while retaining a low vertebral count, small oceanic dolphins underwent deep modifications of their axial skeleton with an extremely high number of short vertebrae. Our comparative analyses provide evidence these vertebral modifications have potentially operated as key innovations. These novelties contributed to their explosive radiation, resulting in an efficient swimming style that provides energetic advantages to small-sized species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6939272PMC
http://dx.doi.org/10.1098/rspb.2019.1771DOI Listing

Publication Analysis

Top Keywords

axial skeleton
12
body size
8
low vertebral
8
vertebral count
8
species
5
divergent evolutionary
4
evolutionary morphology
4
morphology axial
4
skeleton potential
4
potential key
4

Similar Publications

The best treatment method for reverse obliquity intertrochanteric fractures (ROIFs) is still under debate. Our team designed the modified proximal femoral nail (MPFN) specially for treating such fractures. The objective of this research was to introduce the MPFN device and compare the biomechanical properties with Proximal Femoral Nail Antirotation (PFNA) and InterTAN nail via finite element modelling.

View Article and Find Full Text PDF

Preserving Cervical Mobility: A Novel Robot-Assisted Approach for Atlas Fracture Fixation.

Am J Case Rep

January 2025

Department of Orthopedic Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.

BACKGROUND The management of unstable atlas fractures remains a subject of ongoing debate and controversy. The conservative surgical treatment commonly involves fusion, resulting in severe loss of cervical spine mobility, and a large incisions and extensive tissue dissection are required. We aim to introduce a novel concept and surgical approach for treating atlas fracture, one that involves minimizing trauma while maintaining mobility of the upper cervical spine without resorting to fusion.

View Article and Find Full Text PDF

The study aimed to evaluate a newly designed semicircular implant for the fixation of Vancouver Type B1 periprosthetic femoral fractures (PFFs) in total hip arthroplasty (THA) patients. To determine its strength and clinical applicability, the new implant was compared biomechanically with conventional fixation methods, such as lateral locking plate fixation and a plate combined with cerclage wires. : Fifteen synthetic femur models were used in this biomechanical study.

View Article and Find Full Text PDF

: Despite its advantages, lateral close-wedge high tibial osteotomy (LCWHTO) requires proximal tibiofibular joint detachment (PTFJD) or fibular shaft osteotomy for gap closing. These fibula untethering procedures are technically demanding and not free from the risk of neurovascular injuries. Our novel fibula untethering technique, tibial-sided osteotomy (TSO) near the proximal tibiofibular joint (PTFJ), aims to reduce technical demands and the risk of injury to the peroneal nerve and popliteal neurovascular structures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!