Feline calicivirus (FCV) is a widespread and highly prevalent pathogen of domestic cats, responsible for mild upper respiratory tract disease. Outbreaks of severe virulent systemic disease (VSD) associated with FCV infection have been reported worldwide. VSD FCV strains have a broader tropism and cause a systemic vascular compromise. Despite clear differences in the pathogenesis of VSD and oral respiratory infections, attempts to identify specific molecular markers of VSD strains on the major capsid protein VP1 have failed. Region E of VP1 is responsible for the interaction with the cell receptor Junctional Adhesion Molecule JAM-1 (FeJAM-1) and with VP2 minor capsid protein during the entry of the virus. We carried out an original analysis on the sequences from region E of VSD and classical strains. A Multiple Correspondence Analysis was performed on a Boolean matrix built by coding sequences on the basis of their amino acid properties. For the first time, this approach was able to differentiate VSD and classical FCV. Seven remarkable residue positions were shown to be statistically significant for pathotype differentiation, mainly located in the N-terminal hypervariable part of region E. As structural analysis suggested an interaction of these residues with FeJAM-1 or VP2, post-binding events, and specific conformational changes may explain the difference of pathogenesis between pathotypes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6950066 | PMC |
http://dx.doi.org/10.3390/v11121090 | DOI Listing |
Sci Rep
January 2025
School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA.
As nucleus-forming phages become better characterized, understanding their unifying similarities and unique differences will help us understand how they occupy varied niches and infect diverse hosts. All identified nucleus-forming phages fall within the Chimalliviridae family and share a core genome of 68 unique genes including chimallin, the major nuclear shell protein. A well-studied but non-essential protein encoded by many nucleus-forming phages is PhuZ, a tubulin homolog which aids in capsid migration, nucleus rotation, and nucleus positioning.
View Article and Find Full Text PDFMolecules
December 2024
School of Electrical Engineering, Shandong University, Jinan 250061, China.
In recent years, plasma medicine has developed rapidly as a new interdisciplinary discipline. However, the key mechanisms of interactions between cold atmospheric plasma (CAP) and biological tissue are still in the exploration stage. In this study, by introducing the reactive molecular dynamics (MD) simulation, the capsid protein (CA) molecule of HIV was selected as the model to investigate the reaction process upon impact by reactive oxygen species (ROS) from CAP and protein molecules at the atomic level.
View Article and Find Full Text PDFNat Microbiol
January 2025
Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
T cells have been identified as correlates of protection in viral infections. However, the level of vaccine-induced T cells needed and the extent to which they alone can control acute viral infection in humans remain uncertain. Here we conducted a double-blind, randomized controlled trial involving vaccination and challenge in 33 adult human volunteers, using the live-attenuated yellow fever (YF17D) and chimeric Japanese encephalitis-YF17D (JE/YF17D) vaccines.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Innovative Genomics Institute, University of California, Berkeley, CA 94720.
The widespread application of genome editing to treat and cure disease requires the delivery of genome editors into the nucleus of target cells. Enveloped delivery vehicles (EDVs) are engineered virally derived particles capable of packaging and delivering CRISPR-Cas9 ribonucleoproteins (RNPs). However, the presence of lentiviral genome encapsulation and replication proteins in EDVs has obscured the underlying delivery mechanism and precluded particle optimization.
View Article and Find Full Text PDFNat Commun
January 2025
Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.
Many bacteriophages modulate host transcription to favor expression of their own genomes. Phage satellite P4 polarity suppression protein, Psu, a building block of the viral capsid, inhibits hexameric transcription termination factor, ρ, by presently unknown mechanisms. Our cryogenic electron microscopy structures of ρ-Psu complexes show that Psu dimers clamp two inactive, open ρ rings and promote their expansion to higher-oligomeric states.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!