Gauging classical and quantum integrability through out-of-time-ordered correlators.

Phys Rev E

Departamento de Física "J. J. Giambiagi" and IFIBA, FCEyN, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina.

Published: October 2019

Out-of-time-ordered correlators (OTOCs) have been proposed as a probe of chaos in quantum mechanics, on the basis of their short-time exponential growth found in some particular setups. However, it has been seen that this behavior is not universal. Therefore, we query other quantum chaos manifestations arising from the OTOCs, and we thus study their long-time behavior in systems of completely different nature: quantum maps, which are the simplest chaotic one-body system, and spin chains, which are many-body systems without a classical limit. It is shown that studying the long-time regime of the OTOCs it is possible to detect and gauge the transition between integrability and chaos, and we benchmark the transition with other indicators of quantum chaos based on the spectra and the eigenstates of the systems considered. For systems with a classical analog, we show that the proposed OTOC indicators have a very high accuracy that allow us to detect subtle features along the integrability-to-chaos transition.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.100.042201DOI Listing

Publication Analysis

Top Keywords

out-of-time-ordered correlators
8
quantum chaos
8
systems classical
8
quantum
5
gauging classical
4
classical quantum
4
quantum integrability
4
integrability out-of-time-ordered
4
correlators out-of-time-ordered
4
correlators otocs
4

Similar Publications

Quantum Information Scrambling in Adiabatically Driven Critical Systems.

Entropy (Basel)

November 2024

Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, 47011 Valladolid, Spain.

Quantum information scrambling refers to the spread of the initially stored information over many degrees of freedom of a quantum many-body system. Information scrambling is intimately linked to the thermalization of isolated quantum many-body systems, and has been typically studied in a sudden quench scenario. Here, we extend the notion of quantum information scrambling to critical quantum many-body systems undergoing an adiabatic evolution.

View Article and Find Full Text PDF

Spinor Bose-Einstein condensate is an ideal candidate for implementing the many-body entanglement, quantum measurement and quantum information processing owing to its inherent spin-mixing dynamics. Here we present a system of an Rb atomic spin-1 Bose-Einstein condensate coupled to an optical ring cavity, in which cavity-mediated nonlinear interactions give rise to saddle points in the semiclassical phase space, providing a general mechanism for exponential fast scrambling and metrological gain augment. We theoretically study metrological gain and fidelity out-of-time-ordered correlator based on time-reversal protocols and demonstrate that exponential rapid scrambling dynamics can enhance quantum metrology.

View Article and Find Full Text PDF

Thermal quenching of classical and semiclassical scrambling.

Phys Rev E

July 2024

Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.

Quantum scrambling often gives rise to short-time exponential growth in out-of-time-ordered correlators. The scrambling rate over an isolated saddle point at finite temperature is shown here to be reduced by a hierarchy of quenching processes. Two of these appear in the classical limit, where escape from the neighborhood of the saddle reduces the rate by a factor of two, and thermal fluctuations around the saddle reduce it further; a third process can be explained semiclassically as arising from quantum thermal fluctuations around the saddle, which are also responsible for imposing the Maldacena-Shenker-Stanford bound.

View Article and Find Full Text PDF

Out-of-time ordered correlators in kicked coupled tops: Information scrambling in mixed phase space and the role of conserved quantities.

Chaos

June 2024

Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India and Center for Quantum Information, Communication and Computing (CQuICC), Indian Institute of Technology Madras, Chennai 600036, India.

We study operator growth in a bipartite kicked coupled tops (KCTs) system using out-of-time ordered correlators (OTOCs), which quantify "information scrambling" due to chaotic dynamics and serve as a quantum analog of classical Lyapunov exponents. In the KCT system, chaos arises from the hyper-fine coupling between the spins. Due to a conservation law, the system's dynamics decompose into distinct invariant subspaces.

View Article and Find Full Text PDF

It is a well-understood fact that the transport of excitations throughout a lattice is intimately governed by the underlying structures. Hence, it is only natural to recognize that the dispersion of information also has to depend on the lattice geometry. In the present work, we demonstrate that two-dimensional lattices described by the Bose-Hubbard model exhibit information scrambling for systems as little as two hexagons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!