The capture of liquid microdroplets on fibers, webs, and surfaces is important in a range of natural and industrial processes. One such application is the fibrous filtration of aerosols. Contact angle and wetting dynamics have a significant influence on capture and re-entrainment, yet there is no comprehensive model that accounts for these properties and their influence on capture efficiency. In this study, a series of computational simulations using liquid droplets and air are carried out to investigate the influence of equilibrium and dynamic contact angles on the capture and re-entrainment of mist droplets. A range of operating conditions for droplet-fiber diameter ratios, flow velocities, and contact angles, encapsulating both super-oleophilic and super-oleophobic media, are considered. All simulations are carried out using the volume of fluid (VOF) interface capturing approach in the finite volume solver interFoam within OpenFOAM. The physics of microdroplet impacting on a fiber is discussed and three distinct regimes for the spreading of the droplet around the fiber-inertia, capillary, and stagnation pressure controlled-are identified. It was found that the classification of filtration media for any fluid system, rather broadly as philic or phobic, based on the equilibrium contact angle alone may be insufficient for two reasons: (i) the characteristics of droplet-fiber interaction, including capture or re-entrainment, differs significantly over the range of contact angles for both philic and phobic media; and more importantly (ii) equilibrium contact angle plays little role in the initial stages of the droplet-fiber interaction that predominantly dictates the fate of the droplet. On the contrary, it is the contact angle dynamics that influences the initial stages of droplet impact on fibers, while commercial filters are seldom characterized based on this property. The isolated influence of equilibrium, advancing and receding contact angles on the potential mechanisms that can result in full or partial capture or re-entrainment are highlighted. The influence of equilibrium and advancing and receding hystereses are summarized in the form of a capture-regime map that shows four distinct regimes: (i) likely capture, (ii) likely re-entrainment with minimal or no capture, (iii) receding contact angle assisted partial or full capture, and (iv) advancing contact angle inhibited partial or full re-entrainment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.100.042803 | DOI Listing |
J Environ Sci (China)
February 2024
State Key Lab of Clean Energy Utilization, State Environmental Protection Engineering Center for Coal-Fired Air Pollution Control, Zhejiang University, Hangzhou 310027, China; Baima Lake Laboratory (Zhejiang Provincial Laboratory of Energy and Carbon Neutrality), Hangzhou 310000, China.
Ships and other mobile pollution sources emitted massive ultrafine and low-resistivity particles containing black carbon (BC), which were harmful to human health and were difficult to capture by conventional electrostatic precipitators (ESPs). In this study, nanoscale carbon black was adopted as simulated particles (SP) with similar physicochemical properties for black carbon emitted from ships (SP-BC) to investigate the feasibility of using an ESP with square-grooved collecting plates for the removal of SP-BC at low backpressures. The increased applied voltage significantly improved the total collection of SP-BC whereas may also promote the conversion of relatively larger particle size SP-BC into nano-size below 20 nm.
View Article and Find Full Text PDFJ Environ Sci (China)
February 2024
Research Center for Combustion and Environmental Technology, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:
Chaos
September 2023
Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA.
The mammalian circadian system comprises a network of endogenous oscillators, spanning from the central clock in the brain to peripheral clocks in other organs. These clocks are tightly coordinated to orchestrate rhythmic physiological and behavioral functions. Dysregulation of these rhythms is a hallmark of aging, yet it remains unclear how age-related changes lead to more easily disrupted circadian rhythms.
View Article and Find Full Text PDFMaterials (Basel)
September 2022
Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden, Germany.
In many energy and process engineering systems where fluids are processed, droplet-laden gas flows may occur. As droplets are often detrimental to the system's operation, they need to be removed. Compact engineering solutions for the removal of entrained droplets are difficult to achieve with conventional flow control and heat transfer approaches and thus droplet removal devices are hence often costly and bulky.
View Article and Find Full Text PDFJ Phys Condens Matter
November 2021
INFAP, CONICET, Departamento de Física, Facultad de Ciencias Físico Matemáticas y Naturales, Universidad Nacional de San Luis, Ejército de los Andes 950, D5700HHW, San Luis, Argentina.
The formulation of a kinetic Monte Carlo simulation to account for the different possible mechanisms present in the problem of resuspension of aerosol particles is addressed as an extension of a former model Benito(201626-37). The re-entrainment of micrometer particles to airflow when detached from a surface by aerodynamic forces is modeled using the similitude of the problem with the desorption process from heterogeneous surfaces. Depending on the relative role of the intervening forces, three main mechanisms for movement initiation can be present:,and.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!