Control of quantum emitter-plasmon strong coupling and energy transport with external electrostatic fields.

J Phys Condens Matter

Advanced Computing and Simulation Laboratory (AχL), Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Victoria 3800, Australia.

Published: March 2020

AI Article Synopsis

  • The study examines a system of quantum emitters interacting with a metal nanoparticle's plasmons, influenced by an external electric field.
  • As the electric field strengthens, the system enters a collective strong coupling regime, creating polariton states and increasing energy transport rates between emitters when one is pumped.
  • The research also explores how the orientation of the emitter's dipole moment impacts collective strong coupling and shows how the electric field can switch the system between weak and strong coupling regimes.

Article Abstract

We investigate a system comprised of a constellation quantum emitters interacting with a localized surface plasmon mode of a metal nanoparticle subject to an externally applied electrostatic field. Due to the strong interactions among the electric field and the plasmonic setup, we show that system enters collective strong coupling regime generating polariton states when the intensity of the applied electrostatic field is increased. This in turn enhances the exciton energy transport rates between two emitters in the system when a single emitter is incoherently pumped. We further analyze how the placement of quantum emitter dipole moment orientation affects the observed collective strong coupling and how the electrostatic field can be used to put our setup to either weak or strong coupling regimes via the interacting electrostatic field.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/ab5bd3DOI Listing

Publication Analysis

Top Keywords

strong coupling
16
electrostatic field
16
energy transport
8
applied electrostatic
8
collective strong
8
strong
5
electrostatic
5
field
5
control quantum
4
quantum emitter-plasmon
4

Similar Publications

Fermi Polaron in Atom-Ion Hybrid Systems.

Phys Rev Lett

December 2024

Dipartimento di Fisica, Università di Trieste, Strada Costiera 11, I-34151 Trieste, Italy.

Atom-ion hybrid systems are promising platforms for the quantum simulation of polaron physics in certain quantum materials. Here, we investigate the ionic Fermi polaron, a charged impurity in a polarized Fermi bath, at zero temperature using quantum Monte Carlo techniques. We compute the energy spectrum, residue, effective mass, and structural properties.

View Article and Find Full Text PDF

We experimentally study the evolution of the magnetic moment m and exchange interaction J as a function of hydrostatic pressure in the zero-field helimagnetic phase of the strongly correlated electron system MnSi. The suppression of magnetic order at ≈1.5  GPa is shown to arise from the J collapse and not from a quantum fluctuations induced reduction of m.

View Article and Find Full Text PDF

The rational design of metal oxide catalysts with enhanced oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) performance is crucial for the practical application of aqueous rechargeable zinc-air batteries (a-r-ZABs). Precisely regulating the electronic environment of metal-oxygen (M-O) active species is critical yet challenging for improving their activity and stability toward OER and ORR. Herein, we propose an atomic-level bilateral regulation strategy by introducing atomically dispersed Ga for continuously tuning the electronic environment of Ru-O and Mn-O in the Ga/MnRuO2 catalyst.

View Article and Find Full Text PDF

Anharmonic computations reveal an intense, narrow (20 cm, 0.043 μm) absorption feature at approximately 2160 cm (4.63 μm) in the vibrational spectra of 14 prototypical singly isocyano-substituted polycyclic aromatic hydrocarbons (NC-PAHs) attributed to the NC stretching mode.

View Article and Find Full Text PDF

In this work, we theoretically explore whether a parity-violating/chiral light-matter interaction is required to capture all relevant aspects of chiral polaritonics or if a parity-conserving/achiral theory is sufficient (e.g., long-wavelength/dipole approximation).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: