We investigate a system comprised of a constellation quantum emitters interacting with a localized surface plasmon mode of a metal nanoparticle subject to an externally applied electrostatic field. Due to the strong interactions among the electric field and the plasmonic setup, we show that system enters collective strong coupling regime generating polariton states when the intensity of the applied electrostatic field is increased. This in turn enhances the exciton energy transport rates between two emitters in the system when a single emitter is incoherently pumped. We further analyze how the placement of quantum emitter dipole moment orientation affects the observed collective strong coupling and how the electrostatic field can be used to put our setup to either weak or strong coupling regimes via the interacting electrostatic field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-648X/ab5bd3 | DOI Listing |
Phys Rev Lett
December 2024
Dipartimento di Fisica, Università di Trieste, Strada Costiera 11, I-34151 Trieste, Italy.
Atom-ion hybrid systems are promising platforms for the quantum simulation of polaron physics in certain quantum materials. Here, we investigate the ionic Fermi polaron, a charged impurity in a polarized Fermi bath, at zero temperature using quantum Monte Carlo techniques. We compute the energy spectrum, residue, effective mass, and structural properties.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Université Grenoble Alpes, CEA, Grenoble INP, IRIG-PHELIQS, F-38000 Grenoble, France.
We experimentally study the evolution of the magnetic moment m and exchange interaction J as a function of hydrostatic pressure in the zero-field helimagnetic phase of the strongly correlated electron system MnSi. The suppression of magnetic order at ≈1.5 GPa is shown to arise from the J collapse and not from a quantum fluctuations induced reduction of m.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Tsinghua University, Zhongguancun North Street, Haidian District, 100084, BEIJING, CHINA.
The rational design of metal oxide catalysts with enhanced oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) performance is crucial for the practical application of aqueous rechargeable zinc-air batteries (a-r-ZABs). Precisely regulating the electronic environment of metal-oxygen (M-O) active species is critical yet challenging for improving their activity and stability toward OER and ORR. Herein, we propose an atomic-level bilateral regulation strategy by introducing atomically dispersed Ga for continuously tuning the electronic environment of Ru-O and Mn-O in the Ga/MnRuO2 catalyst.
View Article and Find Full Text PDFJ Phys Chem A
December 2024
Astrophysics Branch, NASA Ames Research Center, MS 245-6, Moffett Field, California 94035, United States.
Anharmonic computations reveal an intense, narrow (20 cm, 0.043 μm) absorption feature at approximately 2160 cm (4.63 μm) in the vibrational spectra of 14 prototypical singly isocyano-substituted polycyclic aromatic hydrocarbons (NC-PAHs) attributed to the NC stretching mode.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Max Planck Institute for the Structure and Dynamics of Matter and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany.
In this work, we theoretically explore whether a parity-violating/chiral light-matter interaction is required to capture all relevant aspects of chiral polaritonics or if a parity-conserving/achiral theory is sufficient (e.g., long-wavelength/dipole approximation).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!