Background: Intracellular bacteria, especially Mycobacterium tuberculosis, are important pathogenic microorganisms that endanger human health. Purified and synthesized cecropin A-magainin 2 (CAMA-syn) can exhibit a higher antibacterial activity and lower cytotoxicity. To enhance such antimicrobial potential, it would be desirable to deliver CAMA-syn expressed in lung epithelial cells by an adenovirus vector using gene therapy.
Methods: A549 cells in vitro and lung epithelial cells in vivo were used to express CAMA-syn by transducing recombinant adenovirus Ad-SPC-CAMA/GFP, and the expression of CAMA-syn was determined by a reverse transcriptase-polymerase reaction (RT-PCR) and immunofluorescence. The antimicrobial activity in cells was investigated by colony-forming rate and growth curve. Forty Kunming mice of a Bacillus Calmette-Guerin (BCG) infection animal model were randomly divided into three groups: adenoviruses delivery of Ad-SPC-CAMA/GFP, Ad-CMV-CAMA/GFP and empty-virus Ad-CMV-GFP. The expression of CAMA-syn in mice was confirmed by RT-PCR and immunofluorescence. After tracheal injection of adenoviral vector for 3 days, lungs from the mouse model were extracted and homogenized for detection of colony-forming efficiency.
Results: CAMA-syn expressed in lung epithelial cells A549 conferred antimicrobial activity against a series of bacteria, including Salmonella abortusovis and BCG. The results obtained in vivo showed that the colony-forming rate of Ad-SPC-CAMA/GFP (74.54%) and Ad-CMV-CAMA/GFP (62.31%) transduced into mice was significantly lower than that of the control group.
Conclusions: Lung epithelial-specific expression of antimicrobial peptide CAMA-syn mediated by adenovirus suppressed the growth of intracellular bacteria, providing a promising approach for the control of refractory intracellular infection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jgm.3149 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!