Energy homeostasis is crucial for all physiological processes. Thus, when there is low energy intake, negative health effects may arise, including in reproductive function. We propose to study whether caloric restriction (CR) changes testicular metabolic profile and ultimately sperm quality. Male Wistar rats ( = 12) were randomized into a CR group fed with 30% fewer calories than weight-matched, ad libitum-fed animals (control group). Circulating hormonal profile, testicular glucagon-like peptide-1 (GLP-1), ghrelin and leptin receptors expression, and sperm parameters were analyzed. Testicular metabolite abundance and glycolysis-related enzymes were studied by NMR and Western blot, respectively. Oxidative stress markers were analyzed in testicular tissue and spermatozoa. Expressions of mitochondrial complexes and mitochondrial biogenesis in testes were determined. CR induced changes in body weight along with altered GLP-1, ghrelin, and leptin circulating levels. In testes, CR led to changes in receptor expression that followed those of the hormone levels; modified testicular metabolome, particularly amino acid content; and decreased oxidative stress-induced damage in testis and spermatozoa, although sperm head defects increased. In sum, CR induced changes in body weight, altering circulating hormonal profile and testicular metabolome and increasing sperm head defects. Ultimately, our data highlight that conditions of CR may compromise male fertility.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpendo.00355.2019 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!