Background: With an increasing prevalence of obesity and metabolic syndrome, exploring the effects and delineating the mechanisms of possible therapeutic agents are of critical importance. We examined the effects of SGLT2 inhibitor-dapagliflozin on insulin resistance, hepatic gluconeogenesis, hepatic injury and pancreatic ER stress in high-fat diet-induced obese rats.
Materials And Methods: Male Wistar rats were fed with normal diet (ND) or high-fat diet for 16 weeks. Then high-fat rats were given vehicle (HF) or dapagliflozin (1 mg/kg/day; HFDapa) or metformin (30 mg/kg/day; HFMet) for another 4 weeks.
Results: We found that dapagliflozin ameliorated high-fat diet-induced insulin resistance. The fasting plasma glucose level was comparable among groups, although dapagliflozin treatment led to substantial glycosuria. Hepatic gluconeogenic enzymes, PEPCK, G6Pase and FBPase, expression was not different in HF rats compared with ND rats. Meanwhile, dapagliflozin-treated group exhibited the elevation of these enzymes in parallel with the rise of transcription factor CREB, co-factor PGC1α and upstream regulator SIRT1. Hepatic oxidative stress, inflammation and NAFLD activity score as well as hepatic and pancreatic ER stress and apoptosis in obese rats were attenuated by dapagliflozin.
Conclusion: We conclude that dapagliflozin improved obesity-related insulin resistance, hepatic and pancreatic injury independent of fasting plasma glucose level. Of note, dapagliflozin-induced glycosuria apparently triggered the up-regulation of hepatic gluconeogenic enzymes to prevent hypoglycemia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1042/CS20190863 | DOI Listing |
Front Physiol
December 2024
Department of Biological Sciences, USC Dornsife, University of Southern California, Los Angeles, CA, United States.
Sci Rep
December 2024
University of Jammu, Jammu and Kashmir, 180006, India.
Nesfatin-1 is a crucial regulator of energy homeostasis in mammals and fishes, however, its metabolic role remains completely unexplored in amphibians, reptiles, and birds. Therefore, present study elucidates role of nesfatin-1 in glucose homeostasis in wall lizard wherein fasting stimulated hepatic nucb2/nesfatin-1, glycogen phosphorylase (glyp), phosphoenolpyruvate carboxykinase (pepck), and fructose 1,6-bisphosphatase (fbp), while feeding upregulated pancreatic nucb2/nesfatin-1 and insulin, suggesting towards tissue-specific dual role of nesfatin-1 in glucoregulation. The glycogenolytic/gluconeogenic role of nesfatin-1 was further confirmed by an increase in media glucose levels along with heightened hepatic pepck and fbp expression and concomitant decline in liver glycogen content in nesfatin-1-treated liver of wall lizard.
View Article and Find Full Text PDFCell Rep
December 2024
Department of Biochemistry, Virginia Commonwealth University, Richmond, VA 23298, USA. Electronic address:
SPTLC3, an inducible subunit of the serine palmitoyltransferase (SPT) complex, causes production of alternative sphingoid bases, including a 16-carbon dihydrosphingosine, whose biological function is only beginning to emerge. High-fat feeding induced SPTLC3 in the liver, prompting us to produce a liver-specific knockout mouse line. Following high-fat feeding, knockout mice showed decreased fasting blood glucose, and knockout primary hepatocytes showed suppressed glucose production, a core function of hepatocytes.
View Article and Find Full Text PDFFASEB J
November 2024
Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy.
Dodecanedioic acid (DC12) is a dicarboxylic acid present in protective polymers of fruit and leaves. We explored the effects of DC12 on metabolic dysfunction-associated steatohepatitis (MASH) and obesity. DC12 supplementation (100 mg/kg/day) was added to a high-fat diet (HFD) for 8 weeks in rodents to assess its impact on obesity and MASH prevention.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Departments of Pharmacology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!