Herein, a novel valence-selective crystallization (VSC) strategy is developed for the precise separation of Ce element from rare earth (RE) mixtures by selectively crystallizing Ce(iv) into pre-designed metal-organic frameworks (MOFs). The designed VSC strategy features fast separation speed, mild separation conditions, pollution-free operation, high separation efficiency, a wide selection range of ligands and extensibility to other elements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9cc07849e | DOI Listing |
Small
January 2025
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
The scarcity of cost-effective and durable iridium-free anode electrocatalysts for the oxygen evolution reaction (OER) poses a significant challenge to the widespread application of the proton exchange membrane water electrolyzer (PEMWE). To address the electrochemical oxidation and dissolution issues of Ru-based electrocatalysts, an electron-donating modification strategy is developed to stabilize WRuO under harsh oxidative conditions. The optimized catalyst with a low Zirconium doping (Zr, 1 wt.
View Article and Find Full Text PDFTheranostics
January 2025
Departments of Radiology, Washington University in St. Louis, MO 63110, USA.
Cancer remains a leading cause of mortality, with aggressive, treatment-resistant tumors posing significant challenges. Current combination therapies and imaging approaches often fail due to disparate pharmacokinetics and difficulties correlating drug delivery with therapeutic response. In this study, we developed radionuclide-activatable theranostic nanoparticles (NPs) comprising folate receptor-targeted bimetallic organo-nanoparticles (Gd-Ti-FA-TA NPs).
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.
Controlling materials' composition and structure to selectively adsorb rare earth elements (REE) is critical for better separations. Understanding how local electric potentials affect REE adsorption and how they can be modified via chemical substitution is of fundamental importance. We present calculated mean inner potentials for muscovite and phlogopite micas in excellent agreement with measured values of +10.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences, State Key Laboratory of Rare Earth Resource Utilization, CHINA.
Tumor immunotherapy has been widely used clinically, but it is still hindered by weak antitumor immunity and immunosuppressive tumor microenvironment (TME). Here, a kind of simple disodium hydrogen phosphate nanoparticle (Na2HPO4 NP) is prepared to "accelerate" tumor immunotherapy by "increasing throttle" and "relaxing brake" simultaneously. The obtained Na2HPO4 NPs release a large amount of Na+ and HPO42- ions within tumor cells, thereby activating the caspase 1/GSDMD-mediated pyroptosis pathway to achieve immune activation.
View Article and Find Full Text PDFSci Total Environ
January 2025
Inner Mongolia Key Laboratory of Advanced Ceramic Material and Devices, Baotou 014010, China.
Selective recovery of rare earth elements (REEs) from environmental waste is strategically significant. Herein, Ce(III) imprinted EDTA modified chitosan-magnetic graphene oxide (IIP-EDTA-CS-MGO) was prepared for selective recovery of Ce(III). Furthermore, adsorption mechanism was clarified based on versatile adsorption fittings and spectroscopic tests.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!